Rocky Mountain Journal of Mathematics

Bifurcation and chaos in a pulsed plankton model with instantaneous nutrient recycling

Sanling Yuan, Yu Zhao, Anfeng Xiao, and Tonghua Zhang

Full-text: Open access

Article information

Rocky Mountain J. Math. Volume 42, Number 4 (2012), 1387-1409.

First available in Project Euclid: 27 September 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 34K45: Equations with impulses 37G15: Bifurcations of limit cycles and periodic orbits 92C45: Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) [See also 80A30]

Chemostat plankton pulsed periodic solution chaos


Yuan, Sanling; Zhao, Yu; Xiao, Anfeng; Zhang, Tonghua. Bifurcation and chaos in a pulsed plankton model with instantaneous nutrient recycling. Rocky Mountain J. Math. 42 (2012), no. 4, 1387--1409. doi:10.1216/RMJ-2012-42-4-1387.

Export citation


  • D.D. Bainov and P.S. Simeonov, Impulsive differential equations: Asymptotic properties of the solutions, World Scientific, 1995.
  • –––, Impulsive differential equations: Periodic solution and application, Pitman Monogr. Surv. Pure Appl. Math., 1993.
  • E. Beretta, G.I. Bischi and F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol. 28 (1990), 99-111.
  • S. Busenberg, S.K. Kumar, P. Austin and G. Wake, The dynamics of a model of a plankton-nutrient interaction, Bull. Math. Biol. 52 (1990), 677-696.
  • J.M. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math. 32 (1977), 82-95.
  • G. Fan and Gail S.K. Wolkowicz, Analysis of a model of nutrient driven self-cycling fermentation allowing unimodal response functions, Dynam. Contin., Discr. Impuls. Syst.: Appl. Algorithms 8 (2007), 801-831.
  • E. Funasaki and M. Kor, Invasion and chaos in periodically periodically pulsed mass-action chemostat, Theor. Popul. Biol. 44 (1993), 203-224.
  • J.K. Hale and A.S. Somolinos, Competition for fluctuating nutrient, J. Math. Biol. 18 (1983), 255-280.
  • T.G. Hallam, Controlled persistence in rudimentary plankton models. Math. Model. 4 (1977), 2081-2088.
  • V.S. Ivlev, Experimental ecology of the feeding of fishes, Yale University Press, New Haven, 1961.
  • S.R.J. Jang and J. Baglama, Persistence in variable-yield nutrient-plankton models, Math. Comp. Model. 38 (2003), 281-298.
  • B. Li and Y. Kuang, Simple food chain in a chemostat with distinct removal rates, J. Math. Anal. Appl. 242 (2000), 75-92.
  • Z. Lu and K.P. Hadeler, Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor, Math. Biosci. 148 (1998), 147-159.
  • P. Mayzaud and S.A. Poulet, The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter, Limnol. Oceanogr. 23 (1978), 1144-1154.
  • B. Mukhopadhyay and R. Bhattacharyya, Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity, Ecol. Model. 198 (2006), 163-173.
  • R.M. Nisbet, J. Mckinstry and W.S.C. Gurney, A strategic model of material cycling in a closed ecosystem, Math. Biosci. 64 (1983), 99-113.
  • S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol. 31 (1993), 633-654.
  • –––, Oscillations in plankton models with nutrient recycling, J. Theor. Biol. 208 (2001), 15-26.
  • H. Smith and P. Waltman, The theory of the chemostat, Cambridge University, Cambridge, UK, 1995.
  • H.L. Smith, Competitive coexistence in an oscillating chemostat, SIAM J. Appl. Math. 40 (1981), 498-522.
  • R.J. Smith and Gail S.K. Wolkowicz, Growth and competition in the nutrient driven self-cycling fermentation process, Canad. Appl. Math. Quart. 10 (2003), 171-177.
  • J.H. Steele and E.W. Henderson, The role of predation in plankton models, J. Plankton Res. 14 (1992), 157-172.
  • P.A. Taylor and J.L. Williams, Theoretical studies on the coexistence of competing species under continuous-flow conditions, Canad. J. Microbiol. 21 (1975), 90-98.
  • F. Wang, C. Hao and L. Chen, Bifurcation and chaos in a monod type food chain chemostat with pulsed input and washout, Chaos, Soliton Fract. 31 (2007), 826-839.
  • W. Wang, H. Wang and Z. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos, Soliton Fract. 37 (2008), 438-443.
  • Z. Xiang and X. Song, A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input, Chaos, Soliton Fract. 32 (2007), 1419-1428.
  • S. Yuan, D. Xiao and M. Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor, Math. Biosci. 202 (2006), 1-28. \noindentstyle