Rocky Mountain Journal of Mathematics
- Rocky Mountain J. Math.
- Volume 39, Number 5 (2009), 1411-1442.
A Voronovskaya-Type Theorem for a General Class of Discrete Operators
Carlo Bardaro and Ilaria Mantellini
Full-text: Open access
Article information
Source
Rocky Mountain J. Math., Volume 39, Number 5 (2009), 1411-1442.
Dates
First available in Project Euclid: 8 October 2009
Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1255008568
Digital Object Identifier
doi:10.1216/RMJ-2009-39-5-1411
Mathematical Reviews number (MathSciNet)
MR2546649
Zentralblatt MATH identifier
1181.41036
Subjects
Primary: 41A35: Approximation by operators (in particular, by integral operators) 41A25: Rate of convergence, degree of approximation 41A60: Asymptotic approximations, asymptotic expansions (steepest descent, etc.) [See also 30E15]
Keywords
Voronovskaya-type formula moments generalized sampling operators discrete operators
Citation
Bardaro, Carlo; Mantellini, Ilaria. A Voronovskaya-Type Theorem for a General Class of Discrete Operators. Rocky Mountain J. Math. 39 (2009), no. 5, 1411--1442. doi:10.1216/RMJ-2009-39-5-1411. https://projecteuclid.org/euclid.rmjm/1255008568
References
- U. Abel and M. Ivan, Best constant for a Bleimann-Butzer-Hanh moment estimation, East J. Approx. 6 (2000), 349-355.
- O. Agratini, Korovkin type error estimates for Meyer-König and Zeller operators, Math. Inequal. Appl. 4 (2001), 119-126.Mathematical Reviews (MathSciNet): MR1809845
- J. Albrycht and J. Radecki, On generalization of the theorem of Voronovskaya, Zeszyty Naukowe UAM 25 (1960), 3-7.Mathematical Reviews (MathSciNet): MR123873
- F. Altomare and M. Campiti, Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin, 1994.
- D. Barbosu, Some generalized bivariate Bernstein operators, Math. Notes (Miskolc) 1 (2000), 3-10.Mathematical Reviews (MathSciNet): MR1793257
- C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, Convergence in variation and rates of approximation for Bernstein type polynomials and singular convolution integrals, Analysis (Munchen) 23 (2003), 299-340.Mathematical Reviews (MathSciNet): MR2052372
- C. Bardaro and I. Mantellini, On global approximation properties of discrete operators in Orlicz spaces, J. Inequal. Pure Appl. Math. 6, Article 123 (electronic), 2005.Mathematical Reviews (MathSciNet): MR2178304
- --------, Approximation properties in abstract modular spaces for a class of general sampling-type operators, Appl. Anal. 85 (2006), 383-413.Mathematical Reviews (MathSciNet): MR2196677
Digital Object Identifier: doi:10.1080/00036810500380332
Zentralblatt MATH: 1089.41012 - --------, Voronovskaya-type estimates for Mellin convolution operators, Results Math. 50 (2007), 1-16.Mathematical Reviews (MathSciNet): MR2313127
Zentralblatt MATH: 1134.41321
Digital Object Identifier: doi:10.1007/s00025-006-0231-3 - C. Bardaro, J. Musielak and G. Vinti, Nonlinear integral operators and applications, De Gruyter Series in Nonlinear Analysis and Appl. 9, W. De Gruyter and Co., Berlin, 2003.
- M. Beker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J. 27 (1978), 127-141.Mathematical Reviews (MathSciNet): MR493079
Digital Object Identifier: doi:10.1512/iumj.1978.27.27011 - G. Bleimann, P.L. Butzer and L. Hahn, A Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math. 42 (1980), 255-262.Mathematical Reviews (MathSciNet): MR587054
- R. Bojanic and F. Cheng, Rate of convergence of Bernstein polynomials for functions with derivative of bounded variation, J. Math. Anal. Appl. 141 (1989), 136-151.Mathematical Reviews (MathSciNet): MR1004589
Zentralblatt MATH: 0688.41008
Digital Object Identifier: doi:10.1016/0022-247X(89)90211-4 - R. Bojanic and M. Khan, Rate of convergence of some operators of functions with derivatives of bounded variation, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 495-512.
- P.L. Butzer and R. Nessel, Fourier analysis and approximation I, Academic Press, New York, 1971.Mathematical Reviews (MathSciNet): MR510857
- P.L. Butzer and R.L. Stens, Sampling theory for not necessarily band-limited functions: An historical overview, SIAM Review 34 (1992), 40-53.Mathematical Reviews (MathSciNet): MR1156288
Digital Object Identifier: doi:10.1137/1034002
JSTOR: links.jstor.org
Zentralblatt MATH: 0746.94002 - --------, Linear prediction by samples from the past, in Advanced topics in Shannon sampling and interpolation theory, R.J. Marks II, ed., %Springer Texts Electrical Eng., 157-183, Springer, New York, 1993.Mathematical Reviews (MathSciNet): MR1221748
- I. Chlodovsky, Sur le developement des fonctions definies dans un intervalle infini en series de polynomes de M.S. Bernstein, Compositio Math. 4 (1937), 380-393.Mathematical Reviews (MathSciNet): MR1556982
- R.A. De Vore, The approximation of continuous functions by positive linear operators, Lect. Notes Math. 293, Springer-Verlag, Berlin, 1972.
- T. Hermann, On the Szász-Mirakian operators, Acta Math. Acad. Sci. Hungar. 32 (1978), 163-173.
- E. Ibikli, Approximation by Bernstein-Chlodowsky polynomials, Hacet. J. Math. Stat. 32 (2003), 1-5.
- C. Jayasri and Y. Sitaraman, On a Bernstein-type operator of Bleiman, Butzer and Hahn, J. Comput. Appl. Math. 47 (1993), 267-272.Mathematical Reviews (MathSciNet): MR1237316
Zentralblatt MATH: 0774.41022
Digital Object Identifier: doi:10.1016/0377-0427(93)90008-Y - --------, On a Bernstein-type operator of Bleiman, Butzer and Hahn II, J. Analysis 1 (1993), 125-137.
- H.S. Kasana and P.N. Agrawal, Approximation by linear combination of Szász-Mirakian operators, Colloq. Math. 80 (1999), 123-130.Mathematical Reviews (MathSciNet): MR1684576
- G.G. Lorentz, Bernstein polynomials, University of Toronto Press, Toronto, 1953%, 2 ed.,Chelsea Publishing Co., New York, 1986.Mathematical Reviews (MathSciNet): MR864976
- W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihn., Studia Math. 19 (1960), 89-94.Mathematical Reviews (MathSciNet): MR111965
- J. Musielak, Orlicz spaces and modular spaces, Lecture Notes Math. 1034, Springer-Verlag, Berlin, 1983.
- L. Rempulska and M. Skorupka, The Voronovskaya theorem for some operators of the Szász-Mirakian type, Le Matematiche 50 (1995), 251-261.
- L. Rempulska and Z. Walczak, Approximation properties of certain modified Szasz-Mirakyan operators, Le Matematiche 55 (2000), 121-132.
- S. Ries and R.L. Stens, Approximation by generalized sampling series, in Constructive theory of functions, Bl. Sendov, P. Petrushev, R. Maalev and S. Tashev, eds., Pugl. House Bulgarian Academy of Sciences, Sofia, % ( 1984%), 746-756.
- I.J. Schonberg, Cardinal spline interpolation, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1973.Mathematical Reviews (MathSciNet): MR420078
- P.C. Sikkema, On the asymptotic approximation with operators of Meyer-Konig and Zeller, Indag. Math. 32 (1970), 428-440.Mathematical Reviews (MathSciNet): MR276660
- --------, Approximation formulae of Voronovskaya type for certain convolution operators, J. Approx. Theory 26 (1979), 26-45.Mathematical Reviews (MathSciNet): MR536713
Zentralblatt MATH: 0418.41015
Digital Object Identifier: doi:10.1016/0021-9045(79)90130-8 - O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Resource Natural Bureau Standards 45 (1950), 239-245.Mathematical Reviews (MathSciNet): MR45863
- V. Totik, Approximation by Meyer-Konig and Zeller operators, Math. Z. 182 (1983),425-446.
- E.V. Voronovskaya, Determination of the asymptotic form of approximation of functions by the polynomials of S.N. Bernstein, Dokl. Akad. Nauk SSSR, A (1932), 79-85.
- X. Zeng and F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory 109 (2001), 242-256.Mathematical Reviews (MathSciNet): MR1820895
Zentralblatt MATH: 1160.41309
Digital Object Identifier: doi:10.1006/jath.2000.3538
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- SOME GENERALIZATIONS OF PETRYSHYN'S THEOREM AND ALTMAN'S
THEOREM
Zhu, Chuanxi, Zhang, Wanting, and Wu, Zhaoqi, Taiwanese Journal of Mathematics, 2015 - On the rate of convergence of the Bézier type operators
Pych-Taberska, Paulina, Functiones et Approximatio Commentarii Mathematici, 2000 - Localized index and $L^2$-Lefschetz fixed-point formula for orbifolds
Wang, Bai-Ling and Wang, Hang, Journal of Differential Geometry, 2016
- SOME GENERALIZATIONS OF PETRYSHYN'S THEOREM AND ALTMAN'S
THEOREM
Zhu, Chuanxi, Zhang, Wanting, and Wu, Zhaoqi, Taiwanese Journal of Mathematics, 2015 - On the rate of convergence of the Bézier type operators
Pych-Taberska, Paulina, Functiones et Approximatio Commentarii Mathematici, 2000 - Localized index and $L^2$-Lefschetz fixed-point formula for orbifolds
Wang, Bai-Ling and Wang, Hang, Journal of Differential Geometry, 2016 - Weyl type theorems for algebraically Quasi-$\mathcal{HNP}$ operators
Prasad, T. and Rashid, M. H. M., Annals of Functional Analysis, 2015 - Doubly stochastic operators with zero entropy
Frej, Bartosz and Huczek, Dawid, Annals of Functional Analysis, 2019 - On Discretizations of the Generalized Boole Type Transformations and their Ergodicity
AK, Prykarpatski, Journal of Physical Mathematics, 2016 - On the Weyl spectrum
Oberai, Kirti K., Illinois Journal of Mathematics, 1974 - Schatten class Toeplitz operators on the parabolic Bergman space II
Nishio, Masaharu, Suzuki, Noriaki, and Yamada, Masahiro, Kodai Mathematical Journal, 2012 - Fuglede-Putnam Theorem for $w$-hyponormal or class $\mathcal{Y}$ operators
Bachir, A., Annals of Functional Analysis, 2013 - A characterization of the generators of analytic $C_0$-semigroups in the class of scalar type spectral operators
Markin, Marat V., Abstract and Applied Analysis, 2004