Open Access
Decembar, 2007 The punishing factors for convex pairs are $2^{n-1}$
Farit G. Avkhadiev, Karl-Joachim Wirths
Rev. Mat. Iberoamericana 23(3): 847-860 (Decembar, 2007).

Abstract

Let $\Omega$ and $\Pi$ be two simply connected proper subdomains of the complex plane $\mathbb{C}$. We are concerned with the set $A(\Omega,\Pi)$ of functions $f: \Omega\longrightarrow\Pi$ holomorphic on $\Omega$ and we prove estimates for $|f^{(n)}(z)|, f \in A(\Omega,\Pi), z \in \Omega$, of the following type. Let $\lambda_{\Omega}(z)$ and $\lambda_{\Pi}(w)$ denote the density of the Poincaré metric with curvature $K=-4$ of $\Omega$ at $z$ and of $\Pi$ at $w$, respectively. Then for any pair $(\Omega,\Pi)$ of convex domains, $f \in A(\Omega,\Pi), z \in \Omega$, and $n\geq 2$ the inequality $$ \frac{|f^{(n)}(z)|}{n!}\leq 2^{n-1}\frac{(\lambda_{\Omega}(z))^n}{\lambda_{\Pi}(f(z))} $$ is valid. The constant $2^{n-1}$ is best possible for any pair $(\Omega,\Pi)$ of convex domains. For any pair $(\Omega,\Pi)$, where $\Omega$ is convex and $\Pi$ linearly accessible, $f,z,n$ as above, we prove $$ \frac{|f^{(n)}(z)|}{(n+1)!}\leq 2^{n-2}\frac{(\lambda_{\Omega}(z))^n}{\lambda_{\Pi}(f(z))}. $$ The constant $2^{n-2}$ is best possible for certain admissible pairs $(\Omega,\Pi)$. These considerations lead to a new, nonanalytic, characterization of bijective convex functions $h:\Delta\to\Omega$ not using the second derivative of $h$.

Citation

Download Citation

Farit G. Avkhadiev. Karl-Joachim Wirths. "The punishing factors for convex pairs are $2^{n-1}$." Rev. Mat. Iberoamericana 23 (3) 847 - 860, Decembar, 2007.

Information

Published: Decembar, 2007
First available in Project Euclid: 27 February 2008

zbMATH: 1147.30014
MathSciNet: MR2414495

Subjects:
Primary: 30C45 , 30C50 , 30D50

Keywords: bounded functions , close-to-convex functions , Convex domain , Convex functions , Inverse functions , linear accessible domain , Taylor coefficients

Rights: Copyright © 2007 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.23 • No. 3 • Decembar, 2007
Back to Top