Pacific Journal of Mathematics

The generalized Whitehead product.

Martin Arkowitz

Article information

Source
Pacific J. Math., Volume 12, Number 1 (1962), 7-23.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036701

Mathematical Reviews number (MathSciNet)
MR0155328

Zentralblatt MATH identifier
0118.18404

Subjects
Primary: 55.42

Citation

Arkowitz, Martin. The generalized Whitehead product. Pacific J. Math. 12 (1962), no. 1, 7--23. https://projecteuclid.org/euclid.pjm/1103036701


Export citation

References

  • [1] W. D. Barcus, The stable suspension of an Eilenberg-MacLanespace, Trans. i\mer. Math. Soc, 96 (1960), 101-114.
  • [2] I. Berstein and T. Ganea, Homotopical nilpotency, 111. Jour. Math., 5 (1961), 99-130.
  • [3] D. E. Cohen, Products and carrier theory, Proc. Lond. Math. Soc, (3), 7 (1957), 219-248.
  • [4] B. Eckmann and P. J. Hilton, Groupes d'homotopie et dualite, C. R. Acad. Sci. Paris 246 (1958), 2444-2447, 2555-2558, 2991-2993. 11It can be shown (though we shall not do so) that the map is a singular homotopy equivalence.
  • [5] R. H. Fox, On the Lusternik-Schnirelmanncategory, Ann, Math. 42 (1941), 333-370.
  • [6] P. J. Hilton, An Introduction to Homotopy Theory, Cambridge University Press, 1953.
  • [7] P. J. Hilton, On divisors and multiples of continuous maps, Fund. Math. 43 (1956), 358- 386.
  • [8] P. J. Hilton, Homotopy Theory and Duality, Mimeographed notes, Cornell University (1959).
  • [9] P. Olum, Non-abelian cohomology and van Kampen's theorem, Ann. Math., 68 (1958), 658-668.
  • [10] D. Puppe, Homotopiemengen und ihre induzierten abbildungen I, Math. Zeitschr., 69 (1958), 299-344.
  • [11] H. Samelson, A connection between the Whitehead and Pontryaginproduct, Amer. Jour. Math. 75 (1953), 744-752.
  • [12] G. W. Whitehead, On mappings into group-like spaces, Comm. Math. Helv., 28 (1954), 320-328.
  • [13] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc, 55 (1949), 213-245.
  • [14] H. Zassenhaus, The Theory of Groups, Chelsea, 1949.