Pacific Journal of Mathematics

$n$-dimensional area and content in Minkowski spaces.

R. D. Holmes and A. C. Thompson

Article information

Source
Pacific J. Math., Volume 85, Number 1 (1979), 77-110.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784083

Mathematical Reviews number (MathSciNet)
MR571628

Zentralblatt MATH identifier
0467.51007

Subjects
Primary: 52A40: Inequalities and extremum problems

Citation

Holmes, R. D.; Thompson, A. C. $n$-dimensional area and content in Minkowski spaces. Pacific J. Math. 85 (1979), no. 1, 77--110. https://projecteuclid.org/euclid.pjm/1102784083


Export citation

References

  • [1] R. P. Bambah, Polar reciprocal convex bodies, Proc. Cambridge Phil. Soc, 51 (1955), 377-378.
  • [2] R. V. Benson, Euclidean geometry and convexity, McGraw-Hill, New York, 1966, especially Chapter 6.
  • [3] H. Busemann, The isoperimetric problem for Minkowski area, Amer. J. Math., 71 (1949), 743-762.
  • [4] H. Busemann, The foundations of Minkowski geometry, Comm.Mathematici Helvetici, 24 (1950), 156-187.
  • [5] H. Busemann and E. G. Straus, Area and normality, Pacific J. Math., 10 (1960), 35-72.
  • [6] H. Busemann and G. C. Shephard, Convexity on non-convex sets, Proc. Colloq. on Convexity, Copenhagen, 1965 (Copenhagen, 1967), 20-23 and p. 309.
  • [7] J. W. S. Cassels, An Introductionto the Geometry of Numbers, Springer Verlag, Berlin, 1959.
  • [8] H. G. Eggleston, Convexity (Cambridge Tracts in Mathematics and Mathematical Physics, No. 47), Cambrige, 1958.
  • [9] K. Mahler, Ein Ubertragungsprinzipfurkonvexe korper, Casopis Pest. Mat. Fyz., 68 (1939), 93-102.
  • [10] P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Math. Soc. Lecture Notes Series 3, Cambridge, 1971.
  • [11] M. E. Munroe, Modern MultidimensionalCalculus, Addison-Wesley, Reading, 1963.
  • [12] L. A. Santal, An affine invariantfor convex bodies in n-dimensionalspace, (in Spanish), Portugaliae Math., 8 (1949), 155-161.
  • [13] J. J. Schafer, Innerdiameter, perimeterand girthsof spheres, Math. Ann., 173 (1967), 59-82.
  • [14] J. J. Schafer,The self-circumference of polar convex discs, Arch, der Math., 24 (1973), 87-90.
  • [15] J. J. Schaffer and K. Sundaresan, Reflexivity and the girth of the spheres, Math. Ann., 184 (1970), 163-168.
  • [16] A. C. Thompson, An equiperimetric property of Minkowski circles, Bull. London Math. Soc, 7 (1975), 271-272.
  • [17] H. Whitney, Geometry and Integration, Princeton, N. J., 1957.