Pacific Journal of Mathematics

A uniformly continuous function on $[0,\,1]$ that is everywhere different from its infimum.

William Julian and Fred Richman

Article information

Pacific J. Math., Volume 111, Number 2 (1984), 333-340.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03F60: Constructive and recursive analysis [See also 03B30, 03D45, 03D78, 26E40, 46S30, 47S30]
Secondary: 26A15: Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) {For properties determined by Fourier coefficients, see 42A16; for those determined by approximation properties, see 41A25, 41A27}


Julian, William; Richman, Fred. A uniformly continuous function on $[0,\,1]$ that is everywhere different from its infimum. Pacific J. Math. 111 (1984), no. 2, 333--340.

Export citation


  • [I] O.Aberth, Computable Analysis, McGraw-Hill,N.Y.1980.
  • [2] M. Beeson, Foundations of constructive mathematics: metamathematical studies, to appear.
  • [3] E.Bishop, Foundations of Constructive Analysis, McGraw-Hill,New York, 1967.
  • [4] A. Grzegorczyk, Computablefunctionals, Fund. Math.,42(1945), 168-202.
  • [5] A. Heyting, Intuitionism, an Introduction (third edition), North-Holland Publishing Co., Amsterdam, 1971.
  • [6] S. C. Kleene, Introduction to Metamathematics, Van Nostrand, 1952.
  • [7] S. C. Kleene and R. E. Vesley, The Foundations of IntuitionisticMathematics, North-Holland Publishing Co.,Amsterdam,1965.
  • [8] G. Kreisel, Mathematical reviews 1958, p. 238, review of H. Mechkowski, Zur rekursiven Funcktionentheorie.
  • [9] D. Lacombe, Remarques sur les operateurs recursifs et sur les fonctions recursives d'une variable reelle, C.R.Acad. Sci.Paris, 241(1955), 1250-1252.
  • [10] M. Mandelkern, Connectivity of an interval, Proc. Amer. Math. Soc, 54 (1976), 170-172.
  • [II] F.Richman,Church9s thesis without tears, toappear inJ. Symbolic Logic.
  • [12] E. Specker, Nicht konstruktiv beweisbare Stze der Analysis, J. Symbolic Logic, 14 (1949), 145-158.
  • [13] E. Specker,Der Satz vom Maximum in der Rekursive Analysis, Constructivity in Mathematics, Proc. Colloq. Amsterdam 1957, 254-265, North-Holland,1959.
  • [14] I. D. Zaslavsky, Some properties of constructive real numbers and constructive func- tions, Amer. Math. Soc. Trans., 57 (1966), 1-84.