Proceedings of the Japan Academy, Series A, Mathematical Sciences

A character of the Siegel modular group of level 2 from theta constants

Xinhua Xiong

Full-text: Open access

Abstract

Given a characteristic, we define a character of the Siegel modular group of level 2, the computations of their values are obtained. Using our theorems, some key theorems of Igusa [2] can be recovered.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 93, Number 8 (2017), 77-81.

Dates
First available in Project Euclid: 3 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.pja/1506996021

Digital Object Identifier
doi:10.3792/pjaa.93.77

Subjects
Primary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Keywords
Theta constants the Siegel modular groups of level 2 characters

Citation

Xiong, Xinhua. A character of the Siegel modular group of level 2 from theta constants. Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 8, 77--81. doi:10.3792/pjaa.93.77. https://projecteuclid.org/euclid.pja/1506996021


Export citation

References

  • H. M. Farkas and I. Kra, Theta constants, Riemann surfaces and the modular group, Graduate Studies in Mathematics, 37, American Mathematical Society, Providence, RI, 2001.
  • J. Igusa, On the graded ring of theta-constants, Amer. J. Math. 86 (1964), 219–246.
  • K. Matsuda, Generalizations of the Farkas identity for modulus 4 and 7, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 10, 129–132.
  • K. Matsuda, The determinant expressions of some theta constant identities, Ramanujan J. 34 (2014), no. 3, 449–456.
  • K. Matsuda, Analogues of Jacobi's derivative formula, Ramanujan J. 39 (2016), no. 1, 31–47.
  • R. Salvati Manni, Thetanullwerte and stable modular forms, Amer. J. Math. 111 (1989), no. 3, 435–455.