Proceedings of the Japan Academy, Series A, Mathematical Sciences

Absence of Cartan subalgebras in continuous cores of free product von Neumann algebras

Yoshimichi Ueda

Full-text: Open access


We show that the continuous core of any type III free product factor has no Cartan subalgebra. This is a complement to previous works due to Houdayer–Ricard and Boutonnet–Houdayer–Raum.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 90, Number 10 (2014), 151-155.

First available in Project Euclid: 4 December 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L54: Free probability and free operator algebras
Secondary: 46L10: General theory of von Neumann algebras

Cartan subalgebra free product type III factor continuous core


Ueda, Yoshimichi. Absence of Cartan subalgebras in continuous cores of free product von Neumann algebras. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 10, 151--155. doi:10.3792/pjaa.90.151.

Export citation


  • R. Boutonnet, C. Houdayer and S. Raum, Amalgamated free product type III factors with at most one Cartan subalgebra, Compos. Math. 150 (2014), no. 1, 143–174.
  • I. Chifan and C. Houdayer, Bass-Serre rigidity results in von Neumann algebras, Duke Math. J. 153 (2010), no. 1, 23–54.
  • A. van Daele, Continuous crossed products and type III von Neumann algebras, London Mathematical Society Lecture Note Series, 31, Cambridge Univ. Press, Cambridge, 1978.
  • J. Dixmier, Von Neumann Algebras, North-Holland Mathematical Library, 27. North-Holland Publishing Co., 1981.
  • J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–359.
  • C. Houdayer, Structural results for free Araki–Woods factors and their continuous cores, J. Inst. Math. Jussieu 9 (2010), 741–767.
  • C. Houdayer and D. Shlyakhtenko, Strongly solid II$_{1}$ factors with an exotic MASA, Int. Math. Res. Not. IMRN 2011, no. 6, 1352–1380.
  • C. Houdayer and É. Ricard, Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors, Adv. Math. 228 (2011), no. 2, 764–802.
  • A. Ioana, Cartan subalgebras of amalgamated free product II$_{1}$ factors, with an appendix joint with S. Vaes, Ann. Sci. Éc. Norm. Sup., to appear. arXiv:1207.0054v3.
  • A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995.
  • S. Neshveyev and E. Størmer, Ergodic theory and maximal abelian subalgebras of the hyperfinite factor, J. Funct. Anal. 195 (2002), no. 2, 239–261.
  • N. Ozawa, Examples of groups which are not weakly amenable, Kyoto J. Math. 52 (2012), no. 2, 333–344.
  • N. Ozawa and S. Popa, On a class of II$_{1}$ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), no. 1, 713–749.
  • N. Ozawa and S. Popa, On a class of II$_{1}$ factors with at most one Cartan subalgebra, II, Amer. J. Math. 132 (2010), no. 3, 841–866.
  • S. Popa and S. Vaes, Unique Cartan decomposition for II$_{1}$ factors arising from arbitrary actions of free groups, Acta Math. 212 (2014), no. 1, 141–198.
  • É. Ricard and Q. Xu, Khintchine type inequalities for reduced free products and applications, J. Reine Angew. Math. 599 (2006), 27–59.
  • D. Shlyakhtenko, Free quasi-free states, Pacific J. Math. 177 (1997), no. 2, 329–368.
  • M. Takesaki, Theory of operator algebras. I, reprint of the first (1979) edition, Encyclopaedia of Mathematical Sciences, 124, Springer, Berlin, 2002.
  • M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, 125, Springer, Berlin, 2003.
  • Y. Ueda, Amalgamated free product over Cartan subalgebra, Pacific J. Math. 191 (1999), no. 2, 359–392.
  • Y. Ueda, Factoriality, type classification and fullness for free product von Neumann algebras, Adv. Math. 228 (2011), no. 5, 2647–2671.
  • Y. Ueda, Discrete cores of type III free product factors, arXiv:1207.6838v3.
  • B. J. Vowden, Normalcy in von Neumann algebras, Proc. London Math. Soc. (3) 27 (1973), 88–100.
  • D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), no. 1, 172–199.
  • S. Yamagami, Notes on operator categories, J. Math. Soc. Japan 59 (2007), no. 2, 541–555.