Proceedings of the Japan Academy, Series A, Mathematical Sciences

Reduced group $C^*$-algebras with the metric approximation property by positive maps

Masatoshi Enomoto and Yasuo Watatani

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 63, Number 8 (1987), 304-306.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195513568

Digital Object Identifier
doi:10.3792/pjaa.63.304

Mathematical Reviews number (MathSciNet)
MR931243

Zentralblatt MATH identifier
0647.46047

Subjects
Primary: 46L05: General theory of $C^*$-algebras
Secondary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx]

Citation

Enomoto, Masatoshi; Watatani, Yasuo. Reduced group $C^*$-algebras with the metric approximation property by positive maps. Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 8, 304--306. doi:10.3792/pjaa.63.304. https://projecteuclid.org/euclid.pja/1195513568


Export citation

References

  • [1] J. D. Canniere and U. Haagerup: Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math., 107, 455-500 (1985).
  • [2] I. M. Chiswell: Abstract length functions in groups. Math. Proc. Camb. Phil. Soc, 80, 451-463 (1976).
  • [3] M. D. Choi and E. G. Eff ros: Nuclear C*-algebras and the approximation property. Amer. J. Math., 100, 61-79 (1978).
  • [4] M. Enomoto and Y. Watatani: Reduced group C*-algebras of amalgamated free products with the metric approximation property (preprint 1982).
  • [5] U. Haagerup: An example of a non nuclear C*-algebra which has the metric approximation property. Invent. Math., 50, 279-293 (1979).
  • [6] E. Kirschberg: C*-nuclearity implies CPAP. Math. Nachr., 76, 203-212 (1977).
  • [7] J. P. Serre: Trees. Springer-Verlag, Berlin, Heidelberg, New York (1980).
  • [8] A. Szankowski: B(H) does not have the approximation property. Acta Math., 147, 89-108 (1981).
  • [9] Y. Watatani: Property T of Kazhdan implies property FA of Serre. Math. Japon., 27, 97-103 (1981).