Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the universality of Baum-Fulton-MacPherson's Riemann-Roch for singular varieties

shoji Yokura

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 68, Number 6 (1992), 119-122.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195511742

Digital Object Identifier
doi:10.3792/pjaa.68.119

Mathematical Reviews number (MathSciNet)
MR1179381

Zentralblatt MATH identifier
0776.55002

Subjects
Primary: 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20]
Secondary: 14C40: Riemann-Roch theorems [See also 19E20, 19L10]

Citation

Yokura, shoji. On the universality of Baum-Fulton-MacPherson's Riemann-Roch for singular varieties. Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 6, 119--122. doi:10.3792/pjaa.68.119. https://projecteuclid.org/euclid.pja/1195511742


Export citation

References

  • [1] P. Baum, W. Fulton and R. MacPherson: Riemann-Roch for singular varieties. Publ. Math. I.H.E.S., 45, 101-145 (1975).
  • [2] W. Fulton: Rational equivalence on singular varieties, ibid., 45, 147-167 (1975).
  • [3] F. Hirzebruch: Topological Methods in Algebraic Geometry. 3rd ed., Springer-Verlag (1966).
  • [4] R. MacPherson: Chern classes for singular algebraic varieties. Ann. of Math., 100, 423-432 (1974).
  • [5] J. M. Milnor and J. D. Stasheff: Characteristic Classes. Ann. of Math. Studies, no. 76, Princeton Univ. Press (1974).
  • [6] S. Yokura: Some variants of Deligne-Grothendieck-MacPherson's natural transformation C* of Chern class. Crelles Journal, 419, 199-211 (1991).
  • [7] S. Yokura: An extension of Deligne-Grothendieck-MacPherson's natural transformation C% of Chern classes for singular algebraic varieties. Publ. RIMS. Kyoto Univ., 27, no. 5, 745-762 (1991).
  • [8] S. Yokura: On a generalization of MacPherson's Chern homology class. III. Proc. Japan Acad., 67A, 260-262 (1991).
  • [9] S. Yokura: A note on linear independence of Chern numbers and Pontryagin numbers. Math. Japon, 37, no. 6 (1992).
  • [10] S. Yokura: An extension of Baum-Fulton-MacPherson's Riemann-Roch for singular varieties (in preparation).