Proceedings of the Japan Academy, Series A, Mathematical Sciences

Higher Specht polynomials for the symmetric group

Tomohide Terasoma and Hirofumi Yamada

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 69, Number 2 (1993), 41-44.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195511538

Digital Object Identifier
doi:10.3792/pjaa.69.41

Mathematical Reviews number (MathSciNet)
MR1210951

Zentralblatt MATH identifier
0811.20011

Subjects
Primary: 20C30: Representations of finite symmetric groups
Secondary: 05E10: Combinatorial aspects of representation theory [See also 20C30]

Citation

Terasoma, Tomohide; Yamada, Hirofumi. Higher Specht polynomials for the symmetric group. Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 2, 41--44. doi:10.3792/pjaa.69.41. https://projecteuclid.org/euclid.pja/1195511538


Export citation

References

  • [1] A. M. Garsia and C. Procesi: On certain graded Sn-modules and the #-Kostk; polynomials. Adv. Math., 94, 82-138 (1992).
  • [2] I. G. Macdonald : Symmetric Functions and Hall Polynomials. Oxford Universit: Press (1979).
  • [3] I. G. Macdonald : Notes on Schubert Polynomials. Universite de Quebec a Montreal (1991).
  • [4] M. H. Peel: Specht modules and symmetric groups. J. Alg., 36, 88-97 (1975).
  • [5] B. Sagan : The Symmetric Groups. Wadsworth and Brooks (1991).