Nagoya Mathematical Journal

Galois-theoretic characterization of isomorphism classes of monodromically full hyperbolic curves of genus zero

Yuichiro Hoshi

Full-text: Open access

Abstract

Let l be a prime number. In this paper, we prove that the isomorphism class of an l-monodromically full hyperbolic curve of genus zero over a finitely generated extension of the field of rational numbers is completely determined by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. This result can be regarded as a genus zero analogue of a result due to Mochizuki which asserts that the isomorphism class of an elliptic curve which does not admit complex multiplication over a number field is completely determined by the kernels of the natural Galois representations on the various finite quotients of its Tate module.

Article information

Source
Nagoya Math. J. Volume 203 (2011), 47-100.

Dates
First available in Project Euclid: 18 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1313682312

Digital Object Identifier
doi:10.1215/00277630-1331863

Mathematical Reviews number (MathSciNet)
MR2834249

Zentralblatt MATH identifier
1246.14041

Subjects
Primary: 14H30: Coverings, fundamental group [See also 14E20, 14F35]
Secondary: 14H10: Families, moduli (algebraic)

Citation

Hoshi, Yuichiro. Galois-theoretic characterization of isomorphism classes of monodromically full hyperbolic curves of genus zero. Nagoya Math. J. 203 (2011), 47--100. doi:10.1215/00277630-1331863. https://projecteuclid.org/euclid.nmj/1313682312


Export citation

References

  • [1] M. P. Anderson, Exactness properties of profinite completion functors, Topology 13 (1974), 229–239.
  • [2] G. Anderson and Y. Ihara, Pro-l branched coverings of1 and higher circular l-units, Ann. of Math. (2) 128 (1988), 271–293.
  • [3] M. Asada, The faithfulness of the monodromy representations associated with certain families of algebraic curves, J. Pure Appl. Algebra 159 (2001), 123–147.
  • [4] C. L. Chai and F. Oort, A note on the existence of absolutely simple Jacobians, J. Pure Appl. Algebra 155 (2001), 115–120.
  • [5] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75–109.
  • [6] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, I, Publ. Math. Inst. Hautes Études Sci. 11 (1961).
  • [7] A. Grothendieck and J. Dieudonné, Groupes de monodromie en géométrie algébrique, I, Séminaire de Géométrie Algébrique du Bois-Marie (SGA 7 I), Lecture Notes in Math. 288, Springer, Berlin, 1972.
  • [8] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry of nodally nondegenerate outer representations, preprint, to appear in Hiroshima Math. J.
  • [9] Y. Ihara and H. Nakamura, On deformation of maximally degenerate stable marked curves and Oda’s problem, J. Reine Angew. Math. 487 (1997), 125–151.
  • [10] F. Knudsen, The projectivity of the moduli space of stable curves, II: The stacks $\mathcal{M}_{g, n}$, Math. Scand. 52 (1983), 161–199.
  • [11] M. Matsumoto and A. Tamagawa, Mapping-class-group action versus Galois action on profinite fundamental groups, Amer. J. Math. 122 (2000), 1017–1026.
  • [12] S. Mochizuki, Correspondences on hyperbolic curves, J. Pure Appl. Algebra 131 (1998), 227–244.
  • [13] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999), 319–423.
  • [14] S. Mochizuki, “Topics surrounding the anabelian geometry of hyperbolic curves” in Galois Groups and Fundamental Groups, Math. Sci. Res. Inst. Publ. 41, Cambridge University Press, Cambridge, 2003, 119–165.
  • [15] S. Mochizuki, “The absolute anabelian geometry of hyperbolic curves” in Galois Theory and Modular Forms, Dev. Math. 11, Kluwer, Boston, 2004, 77–122.
  • [16] S. Mochizuki and A. Tamagawa, The algebraic and anabelian geometry of configuration spaces, Hokkaido Math. J. 37 (2008), 75–131.
  • [17] H. Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sci. Univ. Tokyo 1 (1994), 71–136.
  • [18] H. Nakamura, N. Takao, and R. Ueno, Some stability properties of Teichmüller modular function fields with pro-l weight structures, Math. Ann. 302 (1995), 197–213.
  • [19] J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss. 322, Springer, Berlin, 1999.
  • [20] T. Oda, “Étale homotopy type of the moduli spaces of algebraic curves” in Geometric Galois Actions, Vol. 1, London Math. Soc. Lecture Note Ser. 242, Cambridge University Press, Cambridge, 1997, 85–95.
  • [21] B. Poonen, Varieties without extra automorphisms, II: Hyperelliptic curves, Math. Res. Lett. 7 (2000), 77–82.
  • [22] L. Ribes and P. Zalesskii, Profinite Groups, Ergeb. Math. Grenzgeb. (3) 40, Springer, Berlin, 2000.
  • [23] J. P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517.
  • [24] N. Takao, Braid monodromies on proper curves and pro-l Galois representations, preprint, to appear in J. Inst. Math. Jussieu.
  • [25] A. Tamagawa, The Grothendieck conjecture for affine curves, Compos. Math. 109 (1997), 135–194.
  • [26] A. Tamagawa, Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), 1291–1336.