Nagoya Mathematical Journal

Scalar curvatures of conformal metrics on $S^n$

Shigeo Kawai

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 140 (1995), 151-166.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118774642

Mathematical Reviews number (MathSciNet)
MR1369484

Zentralblatt MATH identifier
1155.53319

Subjects
Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]
Secondary: 35J60: Nonlinear elliptic equations 53A30: Conformal differential geometry

Citation

Kawai, Shigeo. Scalar curvatures of conformal metrics on $S^n$. Nagoya Math. J. 140 (1995), 151--166. https://projecteuclid.org/euclid.nmj/1118774642


Export citation

References

  • [1] Aubin, J. P. and Ekeland, I., Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
  • [2] Bahri, A. and Coron, C, The scalar curvature problem on the three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172.
  • [3] Bourguignon, J. P. and Ezin, J. P., Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc, 301 (1987), 723-736.
  • [4] Brezis, H. and Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math., Soc, (1983), 486-490.
  • [5] Chang, S.-Y. and Yang, P. C, Prescribing Gaussian curvature on S, Acta Math., 159(1987), 215-259.
  • [6]. Dff. Geom., 27 (1988), 259-296.
  • [7] Chang, S.-Y. and Yang, P. C, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J., 64 (1991), 27-69.
  • [8] Chen, W. and Ding, W., Scalar curvatures on S, Trans. Amer. Math. Soc, 303 (1987), 365-382.
  • [9] Ekeland, I., On the variational principle, J. Math. Anal. AppL, 47, 324-353.
  • [10] Escobar, J. F. and Schoen, R., Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.
  • [11] Han, Z. -C, Prescribing Gaussian curvature on S, Duke Math. J., 61 (1990). 679-703.
  • [12] Hong, C, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc, 97 (1986), 737-747.
  • [13] Kazdan, J. L. and Warner, F. W., Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-74.
  • [14]. Diff. Geom., 10 (1975), 113-134.
  • [15] Moser, J., On a nonlinear problem in differential geometry, Dynamical System, Academic Press, New York, 1973.
  • [16] Shuzhong, S., Ekeland's variational principle and the mountain pass lemma, Acta Mathematica Sinica, 1 (1985), 348-355.
  • [17] Stampacchia, G., On some regular multiple integral problems in the calculus of variations, Comm. Pure Appl. Math., 16 (1963), 383-421.
  • [18] Struwe, M., Variational Methods, Springer, Berlin Heidelberg, 1990.
  • [19] Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 265-274. Department of Mathematics Faculty of Education Saga University Saga 840, Japan