## Nihonkai Mathematical Journal

### Simultaneous extensions of Diaz-Metcalf and Buzano inequalities

#### Abstract

We give a simultaneous extension of Diaz-Metcalf and Buzano inequalities: Let $z_1,\ldots,z_m$ be nonzero vectors in a Hilbert space $\mathscr{H}$. Suppose that $x_1,\ldots,x_n \in \mathscr{H}$ satisfy that for each $j=1,\ldots,m$ there exists a constant $r_j$ such that $0 \le r_j \le \frac{\mathop{\mathrm{Re}}{\left\langle{x_i},{z_j}\right\rangle}}{\left\|{x_i}\right\|}$ for $i=1,\ldots,n$. If $y_1,y_2 \in \mathscr{H}$ satisfy ${\left\langle{y_k},{z_j}\right\rangle}=0$ for $k=1,2$ and $j=1,\ldots,m$, then $${\left|{\left\langle{\sum x_i},{y_1}\right\rangle} {\left\langle{\sum x_i},{y_2}\right\rangle}\right|} + \left(\sum \frac{r_j^2}{c_j}\right) \left(\sum {\left\|{x_i}\right\|}\right)^2 \mathcal{B}\left({y_1}{y_2}\right) \le \mathcal{B}\left({y_1}{y_2}\right) \left\|{\sum {x_i}}\right\|^2,$$ where $\mathcal{B}\left({y_1},{y_2}\right) :=\frac12(\left\|{y_1}\right\| \left\|{y_2}\right\| +{\left|{\left\langle{y_1},{y_2}\right\rangle}\right|})$ and $c_j = \sum_h|{\left\langle{z_h},{z_j}\right\rangle}|$ for $j=1, \ldots, m$.

#### Article information

Source
Nihonkai Math. J., Volume 27, Number 1-2 (2016), 17-27.

Dates
Revised: 23 May 2016
First available in Project Euclid: 14 September 2017

https://projecteuclid.org/euclid.nihmj/1505419738

Mathematical Reviews number (MathSciNet)
MR3698238

Zentralblatt MATH identifier
06820444

Subjects
Primary: 47A63: Operator inequalities

#### Citation

Fujii, Masatoshi; Matsumoto, Akemi; Tominaga, Masaru. Simultaneous extensions of Diaz-Metcalf and Buzano inequalities. Nihonkai Math. J. 27 (2016), no. 1-2, 17--27. https://projecteuclid.org/euclid.nihmj/1505419738

#### References

• M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politech. Torino 31 (1971/73), 405–409 (1974).
• J. B. Diaz and F. T. Metcalf, A complementary triangle inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 88–97.
• M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990), 67–72.
• M. Fujii, T. Furuta and E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179 (1993), 161–169.
• M. Fujii, J.-F. Jiang and E. Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc. 125 (1997), 3655–3658.
• M. Fujii, J.-F. Jiang, E. Kamei and K. Tanahashi, A characterization of chaotic order and a problem, J. Inequal. Appl. 2 (1998), 149–156.
• M. Fujii and E. Kamei, Furuta's inequality and a generalization of Ando's theorem, Proc. Amer. Math. Soc. 115 (1992), 409–413.
• M. Fujii, A. Matsumoto and M. Tominaga, Simultaneous extensions of Selberg and Buzano inequalities, Nihonkai Math. J. 25 (2014), 45–63.
• M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math. J. 9 (1998), 219–225.
• M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality, Proc. Amer. Math. Soc. 128 (2000), 223–228.
• M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality, II, J. Inequal. Appl. 3 (1999), 293–302.
• M. Fujii and H. Yamada, Around the Bessel inequality, Math. Japon. 37 (1992), 979–983.
• T. Furuta, $A \ge B \ge 0$ assures $(B^rA^pB^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. 101 (1987), 85–88.
• T. Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989), 126.
• T. Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), 785–787.
• T. Furuta, Determinant type generalizations of the Heinz-Kato theorem via the Furuta inequality, Proc. Amer. Math. Soc. 120 (1994), 223–231.
• E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883–886.
• K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141–146.
• M. Uchiyama, Some exponential operator inequalities, Math. Inequal. Appl. 2 (1999), 469–471.
• H. S. Wilf, Some applications of the inequality of arithmetic and geometric means to polynomial equations, Proc. Amer. Math. Soc. 14 (1963), 263–265.