Nihonkai Mathematical Journal

Controllability of nonlinear impulsive second order integrodifferential evolution systems in Banach spaces

Ganesan Arthi and Krishnan Balachandran

Full-text: Open access

Abstract

This paper deals with the controllability of impulsive second order integrodifferential systems in Banach spaces. Sufficient conditions for the controllability are derived with the help of the fixed point theorem due to Sadovskii and the theory of strongly continuous cosine family of operators. An example is provided to show the effectiveness of the proposed results. Further, we study the controllability of second order integrodifferential evolution systems with impulses by using the Schaefer fixed-point theorem.

Article information

Source
Nihonkai Math. J., Volume 24, Number 1 (2013), 19-44.

Dates
First available in Project Euclid: 5 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.nihmj/1378408115

Mathematical Reviews number (MathSciNet)
MR3114123

Zentralblatt MATH identifier
1272.93027

Subjects
Primary: 93B05: Controllability
Secondary: 34A37: Differential equations with impulses

Keywords
Controllability impulsive second order integrodifferential systems evolution systems

Citation

Arthi, Ganesan; Balachandran, Krishnan. Controllability of nonlinear impulsive second order integrodifferential evolution systems in Banach spaces. Nihonkai Math. J. 24 (2013), no. 1, 19--44. https://projecteuclid.org/euclid.nihmj/1378408115


Export citation

References

  • G. Agranovich, E. Litsyn, and A. Slavova, Impulsive control of a hysteresis cellular neural network model, Nonlinear Anal. Hybrid Syst. 3 (2009), 65–73.
  • K. Balachandran, and J. P. Dauer, Controllability of nonlinear systems in Banach spaces: A survey, J. Optim. Theory Appl. 115 (2002), 7–28.
  • K. Balachandran, and S. Marshal Anthoni, Controllability of second order semilinear delay integrodifferential systems in Banach spaces, Libertas Math. 20 (2000), 79–88.
  • K. Balachandran, and R. Sakthivel, Controllability of integrodifferential systems in Banach spaces, Appl. Math. Comput. 118 (2001), 63–71.
  • K. Balachandran, D. G. Park, and P. Manimegalai, Controllability of second order integrodifferential evolution systems in Banach spaces, Comput. Math. Appl. 49 (2005), 1623–1642.
  • A. Bressan, Impulsive control of Lagrangian systems and locomotion in fluids, Discrete Contin. Dyn. Syst. Ser. A. 20 (2008), 1–35.
  • Y. K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Solitons Fractals. 33 (2007), 1601–1609.
  • S. Gao, L. Chen, J. J. Nieto, and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine. 24 (2006), 6037–6045.
  • R. K. George, A. K. Nandakumaran, and A. Arapostathis, A note on controllability of impulsive systems, J. Math. Anal. Appl. 241 (2000), 276–283.
  • P. Georgescu, and G. Morosanu, Pest regulation by means of impulsive controls, Appl. Math. Comput. 190 (2007), 790–803.
  • M. Kozak, A fundamental solution of a second order differential equation in a Banach space, Univ. Iagel. Acta Math. 32 (1995), 275–289.
  • V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
  • M. L. Li, M. S. Wang, and F. Q. Zhang, Controllability of impulsive functional differential systems in Banach spaces, Chaos Solitons Fractals. 29 (2006), 175–181.
  • J. J. Nieto, and D. O. Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl. 10 (2009), 680–690.
  • S. K. Ntouyas, and D. O. Regan, Some remarks on controllability of evolution equations in Banach spaces, Electron. J. Differential Equations. 79 (2009), 1–6.
  • J. Palczewski, and L. Stettner, Impulsive control of portfolios, Appl. Math. Optim. 56 (2007), 67–103.
  • J. Y. Park, K. Balachandran, and G. Arthi, Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Anal. Hybrid Syst. 3 (2009), 184–194.
  • L. Run-Zi, Impulsive control and synchronization of a new chaotic system, Phys. Lett. A. 372 (2008), 648–653.
  • B. N. Sadovskii, On a fixed point principle, Funct. Anal. Appl. 1 (1967), 74–76.
  • R. Sakthivel, Q. H. Choi, and S. Marshal Anthoni, Controllability of nonlinear neutral evolution integrodifferential systems, J. Math. Anal. Appl. 275 (2002), 402–417.
  • R. Sakthivel, N. I. Mahmudov, and J. H. Kim, On controllability of second order nonlinear impulsive differential systems, Nonlinear Anal. 71 (2009), 45–52.
  • A. M. Samoilenko, and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
  • H. Schaefer, Uber die Methode der a priori Schranken, Math. Ann. 129 (1955), 41–56.
  • M. W. Spong, Impact controllability of an air hockey puck, Systems Control Lett. 42 (2001), 333–345.
  • C. C. Travis, and G. F. Webb, Compactness, regularity and uniform continuity properties of strongly continuous cosine families, Houston J. Math. 3 (1977), 555–567.
  • C. C. Travis, and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Scie. Hungar. 32 (1978), 76–96.
  • Y. Xiao, D. Cheng, and H. Qin, Optimal impulsive control in periodic ecosystem, Systems Control Lett. 55 (2006), 558–565.
  • Z. Yan, Geometric analysis of impulse controllability for descriptor system, Systems Control Lett. 56 (2007), 1–6.
  • S. T. Zavalishchin, and A. N. Sesekin. Dynamic Impulse Systems: Theory and Applications, vol. 394 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
  • H. Zhang, W. Xu, and L. Chen, A impulsive infective transmission SI model for pest control, Math. Methods Appl. Sci. 30 (2007), 1169–1184.