Notre Dame Journal of Formal Logic

Propositional Logic of Imperfect Information: Foundations and Applications

Ahti-Veikko Pietarinen


I will show that the semantic structure of a new imperfect-information propositional logic can be described in terms of extensive forms of semantic games. I will discuss some ensuing properties of these games such as imperfect recall, informational consistency, and team playing. Finally, I will suggest a couple of applications that arise in physics, and most notably in quantum theory and quantum logics.

Article information

Notre Dame J. Formal Logic Volume 42, Number 4 (2001), 193-210.

First available in Project Euclid: 12 September 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B99: None of the above, but in this section
Secondary: 81P10: Logical foundations of quantum mechanics; quantum logic [See also 03G12, 06C15] 91A18: Games in extensive form

propositional logic imperfect information extensive games quantum logic


Pietarinen, Ahti-Veikko. Propositional Logic of Imperfect Information: Foundations and Applications. Notre Dame J. Formal Logic 42 (2001), no. 4, 193--210. doi:10.1305/ndjfl/1063372242.

Export citation


  • [1] Bell, J. S., "On the Einstein-Podolsky-Rosen paradox", Physics, vol. 1 (1964), pp. 195--200.
  • [2] Binmore, K., "A note on imperfect recall", pp. 51--62 in Understanding Strategic Interaction. Essays in Honor of Reinhard Selten, edited by Albers, Wulf, et al., Springer Verlag, New York, 1996.
  • [3] Birkhoff, G., and J. von Neumann, "The logic of quantum mechanics", Annales Mathematicae, vol. 37 (1936), pp. 823--43.
  • [4] Boukas, A., "Quantum formulation of classical two-person zero-sum games", Open Systems & Information Dynamics, vol. 7 (2000), pp. 19--32.
  • [5] Bub, J., Interpreting the Quantum World, Cambridge University Press, Cambridge, 1997.
  • [6] Deutsch, D., A. Ekert, and R. Lupacchini, "Machines, logic and quantum physics", The Bulletin of Symbolic Logic, vol. 6 (2000), pp. 265--83.
  • [7] Einstein, A., B. Podolsky, and N. Rosen, ``Can quantum mechanical description of physical reality be considered complete?'' Physical Review, vol. 47 (1935), pp. 777--80.
  • [8] Greenberger, D. M., M. Horne, and A. Zeilinger, "Going beyond Bell's theorem", pp. 69--72 in Bell's Theorem, Quantum Theory and Conceptions of the Universe. Proceedings of the Fall Workshop held at George Mason University, Fairfax, Virginia, October 21--22, 1988, edited by M. Kafatos, Kluwer Academic Publishers Group, Dordrecht, 1989.
  • [9] Hardegree, G. M., and P. J. Frazer, "Charting the labyrinth of quantum logics: A progress report", pp. 53--76 in Current Issues in Quantum Logic, Plenum, New York, 1981.
  • [10] Hintikka, J., The Principles of Mathematics Revisited, Cambridge University Press, Cambridge, 1996.
  • [11] Hintikka, J., and G. Sandu, "Game-theoretical semantics", pp. 361--410 in Handbook of Logic and Language, edited by J. van Benthem and A. ter Meulen, North-Holland Publishing Co., Amsterdam, 1997.
  • [12] Ho, Y. C., and F. K. Sun, "Value of information in two-team zero-sum problems", Journal of Optimization Theory and Applications, vol. 14 (1974), pp. 557--71.
  • [13] Hughes, R. I. G., "Semantic alternatives in partial Boolean algebras", Journal of Philosophical Logic, vol. 14 (1985), pp. 411--46.
  • [14] Hughes, R. I. G., The Structure and Interpretation of Quantum Mechanics, Harvard University Press, Cambridge, 1989.
  • [15] Isbell, J. R., "Finitary games", pp. 79--96 in Contributions to the Theory of Games, Princeton University Press, Princeton, 1957.
  • [16] Kim, K. H., and F. W. Roush, Team Theory, Ellis Horwood Ltd., Chichester, 1987.
  • [17] Kochen, S., and E. P. Specker, "The problem of hidden variables in quantum mechanics", Journal of Mathematics and Mechanics, vol. 17 (1967), pp. 59--87.
  • [18] Koller, D., and N. Megiddo, "The complexity of two-person zero-sum games in extensive form", Games and Economic Behavior, vol. 4 (1992), pp. 528--52.
  • [19] Kuhn, H. W., editor, Classics in Game Theory, Princeton University Press, Princeton, 1997.
  • [20] Lehrer, E., "Repeated games with stationary bounded recall strategies", Journal of Economic Theory, vol. 46 (1988), pp. 130--144.
  • [21] Mermin, N. D., "Hidden variables and the two theorems of John Bell", Reviews of Modern Physics, vol. 65 (1993), pp. 803--815.
  • [22] Osborne, M. J., and A. Rubinstein, A Course in Game Theory, The MIT Press, Cambridge, 1994.
  • [23] Pan, J.-W., et al., "Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement", Nature, vol. 403 (2000), pp. 515--19.
  • [24] Piccione, M., and A. Rubinstein, "On the interpretation of decision problems with imperfect recall", Games and Economic Behavior, vol. 20 (1997), pp. 3--24.
  • [25] Pietarinen, A., "Quantum logic and quantum theory in a game-theoretic perspective", Open Systems & Information Dynamics, vol. 9 (2002), pp. 273--90.
  • [26] Pietarinen, A., and G. Sandu, "Games in philosophical logic", Nordic Journal of Philosophical Logic, vol. 4 (1999), pp. 143--73.
  • [27] Putnam, H., ``Is logic empirical?'' pp. 181--206 in Boston Studies in the Philosophy of Science, edited by R. Cohen and M. Wartofsky, D. Reidel, Dordrecht, 1969.
  • [28] Rasmusen, E., Games and Information: An Introduction to Game Theory, Blackwell, Cambridge, 1989.
  • [29] Sackett, C. A., et al., "Experimental entanglement of four particles", Nature, vol. 404 (2000), pp. 256--59.
  • [30] Sandu, G., and A. Pietarinen, "Informationally independent connectives", in Games, Logic, and Constructive Sets, edited by G. Mints and R. Muskens, Chicago University Press, Chicago, 2003.
  • [31] Sandu, G., "On the logic of informational independence and its applications", Journal of Philosophical Logic, vol. 22 (1993), pp. 29--60.
  • [32] Sandu, G., and A. Pietarinen, "Partiality and games: Propositional logic", Logic Journal of the IGPL. Interest Group in Pure and Applied Logics, vol. 9 (2001), pp. 101--21.
  • [33] Strotz, R., "Myopia and inconsistency in dynamic utility maximization", Review of Economic Studies, vol. 23 (1956), pp. 165--80.
  • [34] Thompson, F., Equivalence of Games in Extensive Form, RM-759, The Rand Corporation, California, 1952. Reprinted in [?], pp. 36--45.
  • [35] von Neumann, J., and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944.