Abstract
The purpose of this paper is to construct and study equivariant Khovanov homology, a version of Khovanov homology theory for periodic links. Since our construction works regardless of the characteristic of the coefficient ring, it generalizes a previous construction by Chbili. We establish invariance under equivariant isotopies of links and study algebraic properties of integral and rational version of the homology theory. Moreover, we construct a skein spectral sequence converging to equivariant Khovanov homology and use this spectral sequence to compute, as an example, equivariant Khovanov homology of torus links .
Citation
Wojciech Politarczyk. "Equivariant Khovanov Homology of Periodic Links." Michigan Math. J. 68 (4) 859 - 889, November 2019. https://doi.org/10.1307/mmj/1565251218
Information