Kodai Mathematical Journal

The growth of solutions of second order linear differential equations with meromorphic coefficients

Zong-Xuan Chen

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 22, Number 2 (1999), 208-221.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138044043

Digital Object Identifier
doi:10.2996/kmj/1138044043

Mathematical Reviews number (MathSciNet)
MR1700593

Zentralblatt MATH identifier
0940.34069

Subjects
Primary: 34M10: Oscillation, growth of solutions
Secondary: 30D35: Distribution of values, Nevanlinna theory

Citation

Chen, Zong-Xuan. The growth of solutions of second order linear differential equations with meromorphic coefficients. Kodai Math. J. 22 (1999), no. 2, 208--221. doi:10.2996/kmj/1138044043. https://projecteuclid.org/euclid.kmj/1138044043


Export citation

References

  • [1] P. D. BARRY, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser. (2), 14 (1963), 293-302.
  • [2] P. D. BARRY, Some theorems related to the cos /?-theorem, Proc. London Math. Soc. (3), 2 (1970), 334-360.
  • [3] A. BESICOVITCH, On integral functions of order < 1, Math. Ann., 97 (1927), 677-695
  • [4] Z. -X. CHEN, The zero, pole and order of meromorphic solutions of differential equations wit meromorphic coefficients, Kodai Math. J., 19 (1996), 341-354.
  • [5] Z. -X. CHEN AND C. -C. YANG, On the zeros and hyper-order of meromorphic solutions of linea differential equations, Ann. Acad. Sci. Fenn. Math., 24 (1999), 215-224.
  • [6] C. -T. CHUANG, Sur la comparaison de la croissance d'une fonction meromorphe et de celle d sa denvee, Bull. Sci. Math., 75 (1951), 171-190.
  • [7] G. FRANK AND S. HELLERSTEIN, On the meromorphic solutions of non-homogeneous linea differential equations with polynomial coefficients. Proc. London Math. Soc. (3), 53 (1986), 407-428.
  • [8] G. GUNDERSEN, Estimates for the logarithmic denvative of a meromorphic function, plu similar estimates, J. London Math. Soc. (2), 37 (1988), 88-104.
  • [9] G. GUNDERSEN, Finite order solutions of second order linear differential equations, Trans Amer. Math. Soc, 305 (1988) 415-429.
  • [10] W. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964
  • [11] W. HAYMAN, Thelocal growth of power sees: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317-358
  • [12] S. HELLERSTEIN, J. MILES AND J. ROSSI, On the growth of solutions of f " + gf+ hf = 0, Ann. Acad. Sci. Fenn. Ser.A I Math., 17 (1992), 343-365
  • [13] Y-Z. HEAND X. -Z. XIAO, Algebroid Functions and Ordinary Differential Equations, Scienc Press, 1988(in Chinese).
  • [14] G. JANK AND L. VOLKMANN, Meromorphe Funktionen und Differentialgleichungen, Bir khauser, 1985.
  • [15] K. -H. KWON, On the growth of entire functions satisfying second order linear differentia equations, Bull. Korean Math. Soc, 33 (1996), 487-496.
  • [16] K. -H. KWON, Nonexistence of finite order solutions of certain second order linear differentia equations, Kodai Math. J, 19 (1996), 378-387.
  • [17] J. K. LANGLEY, Some oscillation theorems for higher order linear differential equations wit entire coefficients of small growth, Results Math., 20 (1990), 517-529.
  • [18] H. -X. Yi AND C. -C. YANG, The Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995(in Chinese)