Abstract
We consider a holomorphic foliation $\mathcal{F}$ of codimension $k\geq 1$ on a homogeneous compact Kähler manifold $X$ of dimension $n \gt k$. Assuming that the singular set ${\rm Sing}(\mathcal{F})$ of $\mathcal{F}$ is contained in an absolutely $k$-convex domain $U\subset X$, we prove that the determinant of normal bundle $\det(N_{\mathcal{F}})$ of $\mathcal{F}$ cannot be an ample line bundle, provided $[n/k]\geq 2k+3$. Here $[n/k]$ denotes the largest integer $\leq n/k.$
Citation
Maurício CORRÊA Jr.. Arturo FERNÁNDEZ-PÉREZ. "Absolutely $k$-convex domains and holomorphic foliations on homogeneous manifolds." J. Math. Soc. Japan 69 (3) 1235 - 1246, July, 2017. https://doi.org/10.2969/jmsj/06931235
Information