Journal of the Mathematical Society of Japan

Universal curvature identities and Euler–Lagrange formulas for Kähler manifolds

Peter B. GILKEY, JeongHyeong PARK, and Kouei SEKIGAWA

Full-text: Open access

Abstract

We relate certain universal curvature identities for Kähler manifolds to the Euler–Lagrange equations of the scalar invariants which are defined by pairing characteristic forms with powers of the Kähler form.

Article information

Source
J. Math. Soc. Japan, Volume 68, Number 2 (2016), 459-487.

Dates
First available in Project Euclid: 15 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1460727368

Digital Object Identifier
doi:10.2969/jmsj/06820459

Mathematical Reviews number (MathSciNet)
MR3488133

Zentralblatt MATH identifier
1353.53024

Subjects
Primary: 53B35: Hermitian and Kählerian structures [See also 32Cxx]
Secondary: 57R20: Characteristic classes and numbers

Keywords
universal curvature identities Kähler manifolds Euler–Lagrange formulas

Citation

GILKEY, Peter B.; PARK, JeongHyeong; SEKIGAWA, Kouei. Universal curvature identities and Euler–Lagrange formulas for Kähler manifolds. J. Math. Soc. Japan 68 (2016), no. 2, 459--487. doi:10.2969/jmsj/06820459. https://projecteuclid.org/euclid.jmsj/1460727368


Export citation

References

  • M. F. Atiyah, R. Bott and V. K. Patodi, On the heat equation and the index theorem, Invent. Math., 19 (1973), 279–330; Errata, 28 (1975), 277–280.
  • M. Berger, Quelques formulas de variation pour une structure riemanniene, Ann. Sci. Éc. Norm. Supér., 3 (1970), 285–294.
  • S. Chern, A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds, Ann. of Math., 45 (1944), 747–752.
  • Y. Euh, J. H. Park and K. Sekigawa, A curvature identity on a 4-dimensional Riemannian manifold, Results Math., 63 (2013), 107–114.
  • Y. Euh, J. H. Park and K. Sekigawa, Curvature identities derived from the integral formula for the first Pontrjagin number, Differ. Geom. Appl., 31 (2013), 463–471.
  • A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms, Part I, Indag. Math., 18 (1956), 338–360.
  • T. Fukami, Invariant tensors under the real representation of unitary groups and their applications, J. Math. Soc. Japan, 10 (1958), 135–144.
  • P. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Math., 10 (1973), 344–382.
  • P. Gilkey, Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds, Advances in Math., 11 (1973), 311–325.
  • F. Hirzebruch, Topological methods in algebraic geometry, Berlin-Heidelberg-New York, Springer, 1966.
  • P. Gilkey, J. H. Park and K. Sekigawa, Universal curvature identities, Diff. Geom. Appl., 29 (2011), 770–778.
  • P. Gilkey, J. H. Park and K. Sekigawa, Universal curvature identities II, J. Geom and Physics, 62 (2012), 814–825.
  • P. Gilkey, J. H. Park and K. Sekigawa, Universal curvature identities III, Int. J. Geom. Methods Mod. Phy., 10 (2013), No.,6, 1350025.
  • N. Iwahori, Some remarks on tensor invariants of $O(n)$, $U(n)$, $Sp(n)$, J. Math. Soc. Japan, 10 (1958), 146–160.
  • I. Kolář, P. Michor and J. Slovák, Natural operations in differential geometry, Springer-Verlag, 1993.
  • G. M. Kuz'mina, Some generalizations of the Riemann spaces of Einstein, Math. Notes, 16 (1974), 961–963; translation from Mat. Zametki, 16 (1974), 619–622.
  • M.-L. Labbi, Double forms, curvature structures and the $(p,q)$-curvatures, Trans. Am. Math. Soc., 357 (2005), 3971–3992.
  • M.-L. Labbi, On Gauss–Bonnet Curvatures, SIGMA, Symmetry Integrability Geom. Methods Appl., 3, Paper 118, 11 p., electronic only, 2007.
  • M.-L. Labbi, Variational properties of the Gauss–Bonnet curvatures, Calc. Var. Partial Differ. Equ., 32 (2008), 175–189.
  • J. Navarro, Divergence-free tensors associated to a metric, Ph. D. Thesis, Universidad de Extremadura, 2013.
  • A. Navarro and J. Navarro, Dimensional curvature identities on pseudo-Riemannian geometry, J. Geom. Phys., 86 (2014), 554–563.
  • A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math., 65 (1957), 391–404.
  • H. Weyl, The classical groups, Princeton Univ. Press, Princeton, 1946, (8${}^{\operatorname{th}}$ printing).