Journal of Integral Equations and Applications
- J. Integral Equations Applications
- Volume 27, Number 3 (2015), 311-323.
Asymptotic behavior of fractional order Riemann-Liouville Volterra-Stieltjes integral equations
Saïd Abbas, Mouffak Benchohra, Boualem A. Slimani, and Juan J. Trujillo
Abstract
In this paper, we present some results concerning the existence and global asymptotic stability of solutions for a functional integral equation of fractional order. We use Schauder's fixed point theorem for the existence of solutions, and we prove that all these solutions are globally asymptotically stable.
Article information
Source
J. Integral Equations Applications, Volume 27, Number 3 (2015), 311-323.
Dates
First available in Project Euclid: 17 December 2015
Permanent link to this document
https://projecteuclid.org/euclid.jiea/1450388937
Digital Object Identifier
doi:10.1216/JIE-2015-27-3-311
Mathematical Reviews number (MathSciNet)
MR3435802
Zentralblatt MATH identifier
06535146
Subjects
Primary: 26A33: Fractional derivatives and integrals 45G05: Singular nonlinear integral equations 45M10: Stability theory
Keywords
Volterra-Stieltjes integral equation left-sided mixed Riemann-Liouville integral of fractional order solution global asymptotic stability fixed point
Citation
Abbas, Saïd; Benchohra, Mouffak; Slimani, Boualem A.; Trujillo, Juan J. Asymptotic behavior of fractional order Riemann-Liouville Volterra-Stieltjes integral equations. J. Integral Equations Applications 27 (2015), no. 3, 311--323. doi:10.1216/JIE-2015-27-3-311. https://projecteuclid.org/euclid.jiea/1450388937