Journal of Geometry and Symmetry in Physics

Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$

Alexandar B. Yanovski

Full-text: Open access

Abstract

We consider the recursion operator approach to the soliton equations related to a generalized Zakharov-Shabat auxiliary linear system in pole gauge on the Lie algebra $A_2=\mathfrak{sl}(3,\mathbb{C})$ and show that the recursion operator can be identified with the dual to a Nijenhuis tensor for a Poisson-Nijenhuis structure on the manifold of potentials.

Article information

Source
J. Geom. Symmetry Phys., Volume 23 (2011), 97-111.

Dates
First available in Project Euclid: 25 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.jgsp/1495677664

Digital Object Identifier
doi:10.7546/jgsp-23-2011-97-111

Mathematical Reviews number (MathSciNet)
MR2827538

Zentralblatt MATH identifier
1235.35238

Citation

Yanovski, Alexandar B. Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$. J. Geom. Symmetry Phys. 23 (2011), 97--111. doi:10.7546/jgsp-23-2011-97-111. https://projecteuclid.org/euclid.jgsp/1495677664


Export citation