Journal of Generalized Lie Theory and Applications

On anti-structurable algebras and extended Dynkin diagrams

Noriaki Kamiya and Daniel Mondoc

Full-text: Open access

Abstract

We construct Lie superalgebras $\mathfrak{osp}(2n+1|4n+2)$ and $\mathfrak{osp}(2n|4n)$ starting with certain classes of anti-structurable algebras via the standard embedding Lie superalgebra construction corresponding to (ε,δ)-Freudenthal Kantor triple systems.

Article information

Source
J. Gen. Lie Theory Appl., Volume 3, Number 3 (2009), 183-190.

Dates
First available in Project Euclid: 6 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.jglta/1281106537

Digital Object Identifier
doi:10.4303/jglta/S090304

Mathematical Reviews number (MathSciNet)
MR2534023

Zentralblatt MATH identifier
1231.17002

Subjects
Primary: 17A30: Algebras satisfying other identities 17B60: Lie (super)algebras associated with other structures (associative, Jordan, etc.) [See also 16W10, 17C40, 17C50]

Keywords
Nonassociative rings Nonassociative algebras Lie algebras Lie superalgebras Associative structures Jordan structures

Citation

Kamiya, Noriaki; Mondoc, Daniel. On anti-structurable algebras and extended Dynkin diagrams. J. Gen. Lie Theory Appl. 3 (2009), no. 3, 183--190. doi:10.4303/jglta/S090304. https://projecteuclid.org/euclid.jglta/1281106537


Export citation