Open Access
WINTER 2014 Cohen-Macaulayness of Rees algebras of diagonal ideals
Kuei-Nuan Lin
J. Commut. Algebra 6(4): 561-586 (WINTER 2014). DOI: 10.1216/JCA-2014-6-4-561

Abstract

Given two determinantal rings over a field $k$, we consider the Rees algebra of the diagonal ideal, the kernel of the multiplication map. The special fiber ring of the diagonal ideal is the homogeneous coordinate ring of the secant variety. When the Rees algebra and the symmetric algebra coincide, we show that the Rees algebra is Cohen-Macaulay.

Citation

Download Citation

Kuei-Nuan Lin. "Cohen-Macaulayness of Rees algebras of diagonal ideals." J. Commut. Algebra 6 (4) 561 - 586, WINTER 2014. https://doi.org/10.1216/JCA-2014-6-4-561

Information

Published: WINTER 2014
First available in Project Euclid: 5 January 2015

MathSciNet: MR3294862
zbMATH: 1360.13013
Digital Object Identifier: 10.1216/JCA-2014-6-4-561

Subjects:
Primary: 13C40 , 14M12
Secondary: 05E40 , 13P10 , 14Q15

Keywords: Alexander dual , Cohen-Macaulay , determinantal ring , Rees algebra , regularity , secant variety , symmetric algebra

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.6 • No. 4 • WINTER 2014
Back to Top