## Institute of Mathematical Statistics Collections

- Collections
- Volume 10, 2013, 126-137

### On an Approach to Bayesian Sample Sizing in Clinical Trials

Robb J. Muirhead and Adina I. Şoaita

#### Abstract

This paper explores an approach to Bayesian sample size determination in clinical trials. The approach falls into the category of what is often called “proper Bayesian”, in that it does not mix frequentist concepts with Bayesian ones. A criterion for a “successful trial” is defined in terms of a posterior probability, its probability is assessed using the marginal distribution of the data, and this probability forms the basis for choosing sample sizes. We illustrate with a standard problem in clinical trials, that of establishing superiority of a new drug over a control.

#### Chapter information

**Source***Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton*, (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013)

**Dates**

First available in Project Euclid: 23 September 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.imsc/1379942051

**Digital Object Identifier**

doi:10.1214/12-IMSCOLL1007

**Mathematical Reviews number (MathSciNet)**

MR3586942

**Zentralblatt MATH identifier**

1327.62155

**Subjects**

Primary: 62F15: Bayesian inference 62K99: None of the above, but in this section

Secondary: 62P10: Applications to biology and medical sciences

**Keywords**

Bayesian design and analysis clinical trials probability of a successful trial sample size determination

**Rights**

Copyright © 2013, Institute of Mathematical Statistics

#### Citation

Muirhead, Robb J.; Şoaita, Adina I. On an Approach to Bayesian Sample Sizing in Clinical Trials. Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton, 126--137, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2013. doi:10.1214/12-IMSCOLL1007. https://projecteuclid.org/euclid.imsc/1379942051

#### References

- Allen, R., Chen, C., Şoaita, A., Wohlberg, C., Knapp, L., Peterson, B. T., Garcia-Borreguero, D. and Miceli, J. (2010). A randomized, double-blind, 6-week, dose-ranging study of pregabalin in patients with restless legs syndrome.
*Sleep Medicine***11**512–519. - Brutti, P., De Santis, F. and Gubbiotti, S. (2008). Robust Bayesian sample size determination in clinical trials.
*Statistics in Medicine***27**2290–2306.Mathematical Reviews (MathSciNet): MR2432490Digital Object Identifier: doi:10.1002/sim.3175 - Eaton, M. L., Muirhead, R. J. and Steeno, G. S. (2003). Aspects of the dissolution profile testing problem.
*Biopharmaceutical Report***11**2–7.Zentralblatt MATH: 1084.62016 - Eaton, M. L., Muirhead, R. J. and Pickering, E. H. (2006). Assessing a vector of clinical observations.
*Journal of Statisical Planning and Inference***136**3383–3414.Mathematical Reviews (MathSciNet): MR2256273Digital Object Identifier: doi:10.1016/j.jspi.2005.02.019 - Eaton, M. L. and Muirhead, R. J. (2007). On a multiple endpoints testing problem.
*Journal of Statisical Planning and Inference***137**3416–3429.Mathematical Reviews (MathSciNet): MR2363266Digital Object Identifier: doi:10.1016/j.jspi.2007.03.021Zentralblatt MATH: 1119.62110 - Eaton, M. L., Muirhead, R. J. and Şoaita, A. I. (2012). On the limiting behavior of the “Probability of a Successful Trial” in a Bayesian context Technical Report, University of Minnesota, School of Statistics.
- Eaton, M. L., Muirhead, R. J., Mancuso, J. Y. and Kolluri, S. (2006). A confidence interval for the maximal mean QT interval change due to drug effect.
*Drug Information Journal***40**267–271. - Ghosh, J. K. and Ramamoorthi, R. (2003).
*Bayesian Nonparametrics*. Springer, New York.Mathematical Reviews (MathSciNet): MR1992245 - Grouin, J.-M., Coste, M., Bunouf, P. and Lecoutre, B. (2007). Bayesian sample size determination in non-sequential clinical trials: Statistical aspects and some regulatory considerations.
*Statistics in Medicine***26**4914–4924.Mathematical Reviews (MathSciNet): MR2405488Digital Object Identifier: doi:10.1002/sim.2958 - Joseph, L. and Bélisle, P. (1997). Bayesian sample size determination for normal means and differences between normal means.
*The Statistician***46**209–226. - Lewis, J. A. (1999). Statistical principles for clinical trials (ICH E9): An introductory note on an international guideline.
*Statistics in Medicine***18**1903–1904. - M’Lan, C. E., Joseph, L. and Wolfson, D. B. (2008). Bayesian sample size determination for binomial proportions.
*Bayesian Analysis***3**269–296.Mathematical Reviews (MathSciNet): MR2407427Digital Object Identifier: doi:10.1214/08-BA310Project Euclid: euclid.ba/1340370548 - O’Hagan, A. and Stevens, J. W. (2001). Bayesian assessment of sample size for clinical trials of cost-effectiveness.
*Medical Decision Making***21**219–230. - O’Hagan, A., Stevens, J. W. and Campbell, M. J. (2005). Assurance in clinical trial design.
*Pharmaceutical Statistics***4**187–201. - Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004).
*Bayesian Approaches to Clinical Trials and Health Care Evaluation*. Wiley, New York. - Whitehead, J., Valdés-Márquez, E., Johnson, P. and Graham, G. (2008). Bayesian sample size for exploratory clinical trials incorporating historical data.
*Statistics in Medicine***27**2307–2327.Mathematical Reviews (MathSciNet): MR2432491Digital Object Identifier: doi:10.1002/sim.3140Zentralblatt MATH: 0952.62088