Illinois Journal of Mathematics
- Illinois J. Math.
- Volume 57, Number 4 (2013), 1019-1024.
On the Kähler structures over Quot schemes
Indranil Biswas and Harish Seshadri
Abstract
Let $S^{n}(X)$ be the $n$-fold symmetric product of a compact connected Riemann surface $X$ of genus $g$ and gonality $d$. We prove that $S^{n}(X)$ admits a Kähler structure such that all the holomorphic bisectional curvatures are nonpositive if and only if $n<d$. Let $\mathcal{Q}_{X}(r,n)$ be the Quot scheme parametrizing the torsion quotients of $\mathcal{O}^{\oplus r}_{X}$ of degree $n$. If $g\geq 2$ and $n\leq 2g-2$, we prove that $\mathcal{Q}_{X}(r,n)$ does not admit a Kähler structure such that all the holomorphic bisectional curvatures are nonnegative.
Article information
Source
Illinois J. Math., Volume 57, Number 4 (2013), 1019-1024.
Dates
First available in Project Euclid: 1 December 2014
Permanent link to this document
https://projecteuclid.org/euclid.ijm/1417442560
Digital Object Identifier
doi:10.1215/ijm/1417442560
Mathematical Reviews number (MathSciNet)
MR3285865
Zentralblatt MATH identifier
1304.14012
Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves 32Q05: Negative curvature manifolds 32Q10: Positive curvature manifolds
Citation
Biswas, Indranil; Seshadri, Harish. On the Kähler structures over Quot schemes. Illinois J. Math. 57 (2013), no. 4, 1019--1024. doi:10.1215/ijm/1417442560. https://projecteuclid.org/euclid.ijm/1417442560