Illinois Journal of Mathematics

Improved estimates for the discrete Fourier restriction to the higher dimensional sphere

Jean Bourgain and Ciprian Demeter

Full-text: Open access

Abstract

We improve the exponent in (Int. Math. Res. Not. IMRN 1993 (1993) 61–66) for the discrete restriction to the $n$ dimensional sphere, from $p=\frac{2(n+1)}{n-3}$ to $p=\frac{2n}{n-3}$, when $n\ge4$.

Article information

Source
Illinois J. Math., Volume 57, Number 1 (2013), 213-227.

Dates
First available in Project Euclid: 23 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1403534493

Digital Object Identifier
doi:10.1215/ijm/1403534493

Mathematical Reviews number (MathSciNet)
MR3224568

Zentralblatt MATH identifier
1319.42006

Subjects
Primary: 11L07: Estimates on exponential sums
Secondary: 11L05: Gauss and Kloosterman sums; generalizations 42A16: Fourier coefficients, Fourier series of functions with special properties, special Fourier series {For automorphic theory, see mainly 11F30}

Citation

Bourgain, Jean; Demeter, Ciprian. Improved estimates for the discrete Fourier restriction to the higher dimensional sphere. Illinois J. Math. 57 (2013), no. 1, 213--227. doi:10.1215/ijm/1403534493. https://projecteuclid.org/euclid.ijm/1403534493


Export citation

References

  • J. Bennett, A. Carbery and T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no. 2, 261–302.
  • J. Bourgain, Analysis results and problems related to lattice points on surfaces, Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995), Contemp. Math., vol. 208, Amer. Math. Soc., Providence, RI, 1997, pp. 85–109.
  • J. Bourgain, Eigenfunction bounds for the Laplacian on the n-torus, Int. Math. Res. Not. IMRN 1993 (1993), no. 3, 61–66.
  • J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156.
  • J. Bourgain, Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces, Israel J. Math. 193 (2013), 441–458.
  • S. Ganguly and J. Sengupta, Sums of Kloosterman sums over arithmetic progressions, Int. Math. Res. Not. IMRN 2012 (2012), no. 1, 137–165.
  • E. Grosswald, Representations of integers as sums of squares, Springer, New York, 1985.
  • Y. Hu and X. Li, Discrete Fourier restriction associated with Schrodinger equations, preprint, 2011; available at \arxivurlarXiv:1108.5164.
  • H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, Amer. Math. Soc., Providence, RI, 1997.
  • P. Sarnak and J. Tsimerman, On Linnik and Selberg's conjecture about sums of Kloosterman sums, Algebra, arithmetic, and geometry: In honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser, Boston, MA, 2009, pp. 619–635.