Illinois Journal of Mathematics

On the restricted Hilbert–Speiser and Leopoldt properties

Nigel P. Byott, James E. Carter, Cornelius Greither, and Henri Johnston

Full-text: Open access


Let $G$ be a finite abelian group. A number field $K$ is called a Hilbert-Speiser field of type $G$ if, for every tame $G$-Galois extension $L/K$, the ring of integers $\mathcal{O}_L$ is free as an $\mathcal{O}_K[G]$-module. If $\mathcal{O}_L$ is free over the associated order $\mathcal{A}_{L/K}$ for every $G$-Galois extension $L/K$, then $K$ is called a Leopoldt field of type $G$. It is well known (and easy to see) that if $K$ is Leopoldt of type $G$, then $K$ is Hilbert–Speiser of type $G$. We show that the converse does not hold in general, but that a modified version does hold for many number fields $K$ (in particular, for $K/\mathbb{Q}$ Galois) when $G=C_{p}$ has prime order. We give examples with $G=C_5$ to show that even the modified converse is false in general, and that the modified converse can hold when the original does not.

Article information

Illinois J. Math., Volume 55, Number 2 (2011), 623-639.

First available in Project Euclid: 1 February 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R33: Integral representations related to algebraic numbers; Galois module structure of rings of integers [See also 20C10] 11R29: Class numbers, class groups, discriminants


Byott, Nigel P.; Carter, James E.; Greither, Cornelius; Johnston, Henri. On the restricted Hilbert–Speiser and Leopoldt properties. Illinois J. Math. 55 (2011), no. 2, 623--639. doi:10.1215/ijm/1359762405.

Export citation


  • F. Bertrandias and M.-J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sci. Paris Ser. A-B 274 (1972), A1330–A1333.
  • F. Bertrandias, J.-P. Bertrandias and M.-J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sci. Paris Ser. A-B 274 (1972), A1388–A1391.
  • W. Bley and R. Boltje, Computation of locally free class groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 72–86.
  • W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
  • N. P. Byott, Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications, J. Théor. Nombres Bordeaux 9 (1997), 201–219.
  • N. P. Byott and B. Sodaïgui, Galois module structure for dihedral extensions of degree 8: Realizable classes over the group ring, J. Number Theory 112 (2005), 1–19.
  • J. E. Carter, Normal integral bases in quadratic and cyclic cubic extensions of quadratic fields, Arch. Math. 81 (2003), 266–271. MR 2013257; Erratum, ibid. 83 (2004), vi–vii.
  • J. E. Carter, Some remarks on Hilbert–Speiser and Leopoldt fields of given type, Colloq. Math. 108 (2007), 217–223.
  • H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math., vol. 138, Springer-Verlag, New York, 1993.
  • C. W. Curtis and I. Reiner, Methods of representation theory, Vol. II. With applications to finite groups and orders. Wiley, New York, 1987.
  • I. B. Fesenko and S. V. Vostokov, Local fields and their extensions. A constructive approach, American Mathematical Society, Providence, RI, 1993.
  • C. Greither and H. Johnston, On totally real Hilbert–Speiser fields of type $C_p$, Acta Arith. 138 (2009), 329–336.
  • C. Greither, D. R. Replogle, K. Rubin and A. Srivastav, Swan modules and Hilbert–Speiser number fields, J. Number Theory 79 (1999), 164–173.
  • T. Herreng, Sur les corps de Hilbert–Speiser, J. Théor. Nombres Bordeaux 17 (2005), 767–778.
  • H. Johnston, Relative Galois module structure of rings of integers of absolutely abelian number fields, J. Reine Angew. Math. 620 (2008), 85–103.
  • J. Klüners and S. Pauli, Computing residue class rings and Picard groups of orders, J. Algebra 292 (2005), 47–64.
  • H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlk örpers, J. Reine Angew. Math. 201 (1959), 119–149.
  • G. Lettl, The ring of integers of an abelian number field, J. Reine Angew. Math. 404 (1990), 162–170.
  • G. Malle and B. H. Matzat, Inverse Galois theory, Springer, Berlin, 1999.
  • L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), 102–134.
  • Y. Miyata, Wildly ramified extensions of prime degree p and Stickelberger conditions, Japan. J. Math. (N.S.) 15 (1989), 157–168.
  • J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Springer-Verlag, Berlin, 2000.
  • PARI/GP, version 2.3.4, Bordeaux, 2008; available at
  • QaoS, Querying Algebraic Object System; available at
  • J.-P. Serre, Local fields, Graduate Texts in Math., vol. 67, Springer-Verlag, New York, 1979.
  • M. J. Taylor, Hopf orders and Galois module structure, DMV Sem., vol. 18, Group rings and class groups, Birkhäuser, Basel, 1992, pp. 153–210.
  • L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Math., vol. 83, Springer-Verlag, New York, 1997.