Open Access
Fall; 2010 A characterization of product preserving maps with applications to a characterization of the Fourier transform
S. Alesker, S. Artstein-Avidan, D. Faifman, V. Milman
Illinois J. Math. 54(3): 1115-1132 (Fall; 2010). DOI: 10.1215/ijm/1336049986

Abstract

It is shown that a product preserving bijective (not necessarily real linear or continuous) operator on an appropriate class of complex valued functions must have either the form $[\phi\mapsto \phi\circ u]$ or $[\phi\mapsto\overline{\phi\circ u}]$ where $u$ is a fixed diffeomorphism of the base.

Citation

Download Citation

S. Alesker. S. Artstein-Avidan. D. Faifman. V. Milman. "A characterization of product preserving maps with applications to a characterization of the Fourier transform." Illinois J. Math. 54 (3) 1115 - 1132, Fall; 2010. https://doi.org/10.1215/ijm/1336049986

Information

Published: Fall; 2010
First available in Project Euclid: 3 May 2012

zbMATH: 1272.42004
MathSciNet: MR2928347
Digital Object Identifier: 10.1215/ijm/1336049986

Subjects:
Primary: 42A38

Rights: Copyright © 2010 University of Illinois at Urbana-Champaign

Vol.54 • No. 3 • Fall; 2010
Back to Top