Illinois Journal of Mathematics

Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: a gap theorem

Aldir Brasil, Jr., A. Gervasio Colares, and Oscar Palmas

Full-text: Open access

Abstract

Let $M^n$ be a complete spacelike hypersurface with constant mean curvature $H$ in the de Sitter space $S_1^{n+1}$. We use the operator $\phi =A-HI$, where $A$ is the second fundamental form of $M$, and the roots $B_H^- \le B_H^+$ of a certain second order polynomial, to prove that either $\vert\phi\vert^2\equiv 0$ and $M$ is totally umbilical, or $B_H^-\le\sqrt{\sup \vert\phi\vert^2}\le B_H^+$. For the case $H\geq 2\sqrt{n-1}/n$ we prove the following results: for every number $B$ in the interval $[\max\{0,B_H^-\},B_H^+]$ there is an example of a complete spacelike hypersurface such that $\sqrt{\sup \vert\phi\vert^2}=B$; if $\sqrt{\sup \vert\phi\vert^2}=B_H^-$ is attained at some point, then the corresponding $M$ is a hyperbolic cylinder. We characterize the hyperbolic cylinders as the only complete spacelike hypersurfaces in $S_1^{n+1}$ with constant mean curvature, non-negative Ricci curvature and having at least two ends. We also characterize all complete spacelike hypersurfaces of constant mean curvature with two distinct principal curvatures as rotation hypersurfaces or generalized hyperbolic cylinders.

Article information

Source
Illinois J. Math., Volume 47, Number 3 (2003), 847-866.

Dates
First available in Project Euclid: 13 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258138197

Digital Object Identifier
doi:10.1215/ijm/1258138197

Mathematical Reviews number (MathSciNet)
MR2007240

Zentralblatt MATH identifier
1047.53031

Subjects
Primary: 53C50: Lorentz manifolds, manifolds with indefinite metrics
Secondary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]

Citation

Brasil, Aldir; Colares, A. Gervasio; Palmas, Oscar. Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: a gap theorem. Illinois J. Math. 47 (2003), no. 3, 847--866. doi:10.1215/ijm/1258138197. https://projecteuclid.org/euclid.ijm/1258138197


Export citation