International Journal of Differential Equations

The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey

Francesco Mainardi, Antonio Mura, and Gianni Pagnini

Full-text: Open access

Abstract

In the present review we survey the properties of a transcendental function of the Wright type, nowadays known as M-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means of time-integral operators interpreted as derivatives of fractional order. When these generalized diffusion processes are properly characterized with stationary increments, the M-Wright function is shown to play the same key role as the Gaussian density in the standard and fractional Brownian motions. Furthermore, these processes provide stochastic models suitable for describing phenomena of anomalous diffusion of both slow and fast types.

Article information

Source
Int. J. Differ. Equ., Volume 2010, Special Issue (2010), Article ID 104505, 29 pages.

Dates
Received: 13 September 2009
Accepted: 8 November 2009
First available in Project Euclid: 26 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijde/1485399865

Digital Object Identifier
doi:10.1155/2010/104505

Zentralblatt MATH identifier
1222.60060

Citation

Mainardi, Francesco; Mura, Antonio; Pagnini, Gianni. The $M$ -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey. Int. J. Differ. Equ. 2010, Special Issue (2010), Article ID 104505, 29 pages. doi:10.1155/2010/104505. https://projecteuclid.org/euclid.ijde/1485399865


Export citation

References

  • B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Review, vol. 10, pp. 422–437, 1968.MR0242239
  • M. S. Taqqu, “Fractional Brownian motion and long-range dependence,” in Theory and Applications of Long-Range Dependence, P. Doukan, G. Oppenheim, and M. S. Taqqu, Eds., pp. 5–38, Birkhäuser, Boston, Mass, USA, 2003.MR1956042
  • R. Gorenflo, F. Mainardi, and A. Vivoli, “Continuous-time random walk and parametric subordination in fractional diffusion,” Chaos, Solitons & Fractals, vol. 34, no. 1, pp. 87–103, 2007.MR2320430
  • M. M. Meerschaert, D. A. Benson, H.-P. Scheffler, and B. Baeumer, “Stochastic solution of space-time fractional diffusion equations,” Physical Review E, vol. 65, no. 4, Article ID 041103, 4 pages, 2002.MR1917983
  • R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports A, vol. 339, no. 1, pp. 1–77, 2000.MR1809268
  • E. Scalas, R. Gorenflo, and F. Mainardi, “Uncoupled continuous-time random walks: solution and limiting behavior of the master equation,” Physical Review E, vol. 69, no. 1, Article ID 011107, 8 pages, 2004.MR2097999
  • A. A. Dubkov, B. Spagnolo, and V. V. Uchaikin, “Lévy flight superdiffusion: an introduction,” International Journal of Bifurcation and Chaos, vol. 18, no. 9, pp. 2649–2672, 2008.MR2479323
  • W. R. Schneider, “Grey noise,” in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, and R. Moresi, Eds., pp. 676–681, World Scientific, Teaneck, NJ, USA, 1990.MR1124240
  • W. R. Schneider, “Grey noise,” in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (Oslo, 1988), S. Albeverio, J. E. Fenstad, H. Holden, and T. Lindstrøm, Eds., pp. 261–282, Cambridge University Press, Cambridge, UK, 1992.MR1190506
  • A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,” Physical Review E, vol. 66, no. 4, Article ID 046129, 7 pages, 2002.
  • A. V. Chechkin, R. Gorenflo, I. M. Sokolov, and V. Yu. Gonchar, “Distributed order time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 6, no. 3, pp. 259–279, 2003.MR2035651
  • A. V. Chechkin, V. Yu. Gonchar, R. Gorenflo, N. Korabel, and I. M. Sokolov, “Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights,” Physical Review E, vol. 78, no. 2, Article ID 021111, 13 pages, 2008.MR2496818
  • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, “Time fractional diffusion: a discrete random walk approach,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 129–143, 2002.MR1926470
  • R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, “Discrete random walk models for space-time fractional diffusion,” Chemical Physics, vol. 284, no. 1-2, pp. 521–541, 2002.
  • F. Liu, S. Shen, V. Anh, and I. Turner, “Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation,” The ANZIAM Journal, vol. 46, pp. C488–C504, 2005.MR2182183
  • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12–20, 2007.MR2385498
  • Y. Zhang, D. A. Benson, M. M. Meerschaert, and H.-P. Scheffler, “On using random walks to solve the space-fractional advection-dispersion equations,” Journal of Statistical Physics, vol. 123, no. 1, pp. 89–110, 2006.MR2225237
  • P. Zhuang and F. Liu, “Implicit difference approximation for the time fractional diffusion equation,” Journal of Applied Mathematics & Computing, vol. 22, no. 3, pp. 87–99, 2006.MR2323899
  • A. Mura, Non-Markovian stochastic processes and their applications: from anomalous diffusion to time series analysis, Ph.D. thesis, Department of Physics, University of Bologna, March 2008, Supervisor Prof. F. Mainardi, http://www.fracalmo.org/mura/.
  • A. Mura and F. Mainardi, “A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics,” Integral Transforms and Special Functions, vol. 20, no. 3-4, pp. 185–198, 2009.MR2501791
  • A. Mura and G. Pagnini, “Characterizations and simulations of a class of stochastic processes to model anomalous diffusion,” Journal of Physics A, vol. 41, no. 28, Article ID 285003, 22 pages, 2008.MR2430462
  • A. Mura, M. S. Taqqu, and F. Mainardi, “Non-Markovian diffusion equations and processes: analysis and simulations,” Physica A, vol. 387, no. 21, pp. 5033–5064, 2008.
  • M. Caputo, “Linear models of dissipation whose $Q$ is almost frequency independent–-part II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529–539, 1967.
  • M. Caputo, Elasticity and Dissipation, Zanichelli, Bologna, Italy, 1969.
  • R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 223–276, Springer, Vienna, Austria, 1997.MR1611585
  • F. Mainardi and R. Gorenflo, “Time-fractional derivatives in relaxation processes: a tutorial survey,” Fractional Calculus & Applied Analysis, vol. 10, no. 3, pp. 269–308, 2007.MR2382782
  • I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.MR1658022
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.MR2218073
  • E. M. Wright, “On the coefficients of power series having exponential singularities,” Journal of the London Mathematical Society, vol. 8, pp. 71–79, 1933.
  • E. M. Wright, “The asymptotic expansion of the generalized Bessel function,” Proceedings of the London Mathematical Society, vol. 38, pp. 257–270, 1935.
  • E. M. Wright, “The asymptotic expansion of the generalized hypergeometric function,” Journal of the London Mathematical Society, vol. 10, pp. 287–293, 1935.
  • E. M. Wright, “The generalized Bessel function of order greater than one,” The Quarterly Journal of Mathematics, vol. 11, pp. 36–48, 1940.MR0003875
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. 3, chapter 18, McGraw-Hill, New-York, NY, USA, 1954.
  • R. Gorenflo, Yu. Luchko, and F. Mainardi, “Analytical properties and applications of the Wright function,” Fractional Calculus & Applied Analysis, vol. 2, no. 4, pp. 383–414, 1999.MR1752379
  • R. Gorenflo, Yu. Luchko, and F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 175–191, 2000.MR1765948
  • A. A. Kilbas, M. Saigo, and J. J. Trujillo, “On the generalized Wright function,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 437–460, 2002.MR1967844
  • V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1994.MR1265940
  • F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 291–348, Springer, Vienna, Austria, 1997.MR1611587
  • B. Stanković, “On the function of E. M. Wright,” Publications de l'Institut Mathèmatique, vol. 10 (24), pp. 113–124, 1970.MR0280762
  • R. Wong and Y.-Q. Zhao, “Smoothing of Stokes's discontinuity for the generalized Bessel function,” Proceedings of the Royal Society A, vol. 455, no. 1984, pp. 1381–1400, 1999.MR1701756
  • R. Wong and Y.-Q. Zhao, “Smoothing of Stokes's discontinuity for the generalized Bessel function. II,” Proceedings of the Royal Society A, vol. 455, no. 1988, pp. 3065–3084, 1999.MR1807056
  • F. Mainardi, “On the initial value problem for the fractional diffusion-wave equation,” in Waves and Stability in Continuous Media (Bologna, 1993), S. Rionero and T. Ruggeri, Eds., vol. 23 of Series on Advances in Mathematics for Applied Sciences, pp. 246–251, World Scientific, River Edge, NJ, USA, 1994.MR1320083
  • F. Mainardi and M. Tomirotti, “On a special function arising in the time fractional diffusion-wave equation,” in Transform Methods and Special Functions, Sofia 1994, P. Rusev, I. Dimovski, and V. Kiryakova, Eds., pp. 171–183, Science Culture Technology, Singapore, 1995.
  • C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore, 1987.
  • A. Hanyga, “Multi-dimensional solutions of space-time-fractional diffusion equations,” Proceedings of the Royal Society A, vol. 458, no. 2018, pp. 429–450, 2002.MR1889936
  • R. Balescu, “$V$-Langevin equations, continuous time random walks and fractional diffusion,” Chaos, Solitons & Fractals, vol. 34, no. 1, pp. 62–80, 2007.MR2320428
  • G. Germano, M. Politi, E. Scalas, and R. L. Schilling, “Stochastic calculus for uncoupled continuous-time random walks,” Physical Review E, vol. 79, no. 6, Article ID 066102, 12 pages, 2009.MR2551283
  • V. Kiryakova, “The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus,” Computers and Mathematics with Applications. In press.
  • V. Kiryakova, “The special functions of fractional čommentComment on ref. [32?]: Please update the information of these references [31, 32?], if possible. calculus as generalized fractional calculus operators of some basic functions,” Computers and Mathematics with Applications, vol. 59, no. 3, pp. 1128–1141, 2010.
  • F. Mainardi, R. Gorenflo, and A. Vivoli, “Renewal processes of Mittag-Leffler and Wright type,” Fractional Calculus & Applied Analysis, vol. 8, no. 1, pp. 7–38, 2005.MR2179226
  • F. Mainardi and G. Pagnini, “The Wright functions as solutions of the time-fractional diffusion equation,” Applied Mathematics and Computation, vol. 141, no. 1, pp. 51–62, 2003.MR1984227
  • F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation,” Applied Mathematics Letters, vol. 9, no. 6, pp. 23–28, 1996.MR1419811
  • F. Mainardi, Yu. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 4, no. 2, pp. 153–192, 2001.MR1829592
  • W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, New York, NY, USA, 1st edition, 1966.MR0210154
  • W. Feller, An Introduction to čommentComment on ref. [13b: We split this reference to ?, 13b?]. Please check. Probability Theory and Its Applications. Vol. II}, John Wiley & Sons, New York, NY, USA, 2nd edition, 1971.MR0270403
  • P. Humbert, “Nouvelles correspondances symboliques,” Bulletin des Sciences Mathématiques, vol. 69, pp. 121–129, 1945.MR0015564
  • H. Pollard, “The representation of ${e}^{-{x}^{\lambda }}$ as a Laplace integral,” Bulletin of the American Mathematical Society, vol. 52, pp. 908–910, 1946.MR0018286
  • J. Mikusiński, “On the function whose Laplace-transform is ${e}^{-{s}^{\alpha }}$,” Studia Mathematica, vol. 18, pp. 191–198, 1959.MR0108694
  • P. W. Buchen and F. Mainardi, “Asymptotic expansions for transient viscoelastic waves,” Journal de Mécanique, vol. 14, no. 4, pp. 597–608, 1975.
  • F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 283–299, 2000.MR1765955
  • B. N. N. Achar, J. W. Hanneken, and T. Clarke, “Damping characteristics of a fractional oscillator,” Physica A, vol. 339, no. 3-4, pp. 311–319, 2004.MR2091376
  • F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010.
  • A. Freed, K. Diethelm, and Yu. Luchko, “Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus,” First Annual Report NASA/TM-2002-211914, Gleen Research Center, 2002.
  • R. Gorenflo, J. Loutchko, and Yu. Luchko, “Computation of the Mittag-Leffler function ${E}_{\alpha ,\beta }(z)$ and its derivative,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 491–518, 2002.MR1967847
  • I. Podlubny, “Mittag-Leffler function,” The MATLAB routine, http://www.mathworks.com/ matlabcentral/fileexchange.
  • H. J. Seybold and R. Hilfer, “Numerical results for the generalized Mittag-Leffler function,” Fractional Calculus & Applied Analysis, vol. 8, no. 2, pp. 127–139, 2005.MR2179658
  • G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer, New York, NY, USA, 1974.MR0344810
  • F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons & Fractals, vol. 7, no. 9, pp. 1461–1477, 1996.MR1409912
  • F. Mainardi and M. Tomirotti, “Seismic pulse propagation with constant Q and stable probability distributions,” Annali di Geofisica, vol. 40, no. 5, pp. 1311–1328, 1997.
  • Yu. Luchko, “Algorithms for evaluation of the Wright function for the real arguments' values,” Fractional Calculus & Applied Analysis, vol. 11, no. 1, pp. 57–75, 2008.MR2379273
  • F. Mainardi, G. Pagnini, and R. Gorenflo, “Mellin transform and subordination laws in fractional diffusion processes,” Fractional Calculus & Applied Analysis, vol. 6, no. 4, pp. 441–459, 2003.MR2044309
  • I. M. Sokolov and J. Klafter, “From diffusion to anomalous diffusion: a century after Einstein's Brownian motion,” Chaos, vol. 15, no. 2, Article ID 026103, 7 pages, 2005.MR2150232
  • F. Mainardi, G. Pagnini, and R. Gorenflo, “Some aspects of fractional diffusion equations of single and distributed order,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 295–305, 2007.MR2323582
  • A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: solutions and applications,” Chaos, vol. 7, no. 4, pp. 753–764, 1997.MR1604710
  • W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,” Journal of Mathematical Physics, vol. 30, no. 1, pp. 134–144, 1989.MR974464
  • I. M. Gel'fand and G. E. Shilov, Generalized Functions, Volume I, Academic Press, New York, NY, USA, 1964.
  • R. Gorenflo and F. Mainardi, “Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspects,” in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I. M. Sokolov, Eds., chapter 4, pp. 93–127, Wiley-VCH, Weinheim, Germany, 2008.
  • M. M. Meerschaert and H.-P. Scheffler, “Limit theorems for continuous-time random walks with infinite mean waiting times,” Journal of Applied Probability, vol. 41, no. 3, pp. 623–638, 2004.MR2074812
  • R. Gorenflo, “Mittag-Leffler waiting time, power laws, rarefaction, continuous time random walk, diffusion limit,” in Workshop on Fractional Calculus and Statistical Distributions, Centre for Mathematical Sciences, Pala Campus, Pala-Kerala, India, November 2009.