Innovations in Incidence Geometry

Disc structure of certain chamber graphs

P. J. Rowley

Full-text: Open access


The discs of chamber graphs for group geometries, including certain minimal parabolic geometries, maximal p -local geometries, Petersen geometries, GABs and Buekenhout geometries, are investigated.

Article information

Innov. Incidence Geom., Volume 11, Number 1 (2010), 69-97.

Received: 29 January 2008
Accepted: 16 May 2008
First available in Project Euclid: 28 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05E20

chamber graphs group geometries minimal parabolic geometries maximal $p$-local geometries Buekenhout geometries


Rowley, P. J. Disc structure of certain chamber graphs. Innov. Incidence Geom. 11 (2010), no. 1, 69--97. doi:10.2140/iig.2010.11.69.

Export citation


  • M. Aschbacher and S. D. Smith, Tits geometries over $GF(2)$ defined by groups over $GF(3)$, Comm. Algebra 11 (1983), 1675–1684.
  • F. Buekenhout, The geometry of diagrams, Geom. Dedicata 8 (1979), 253–257.
  • ––––, Diagrams for geometries and groups, J. Combin. Theory Ser. A, 27 (1979), 121–151.
  • ––––, Diagrams for sporadic groups, in Finite Groups –- Coming of Age, J. McKay, ed., Contemp. Math. 45 (1985), pp. 1–32.
  • J. J. Cannon and C. Playoust, An Introduction to Algebraic Programming with MAGMA, Draft, 1997.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985.
  • S. Heiss, Two sporadic geometries related to the Hoffman-Singleton graph, J. Combin. Theory Ser. A 53 (1990), 68–80.
  • A. A. Ivanov and S. V. Shpectorov, Geometries for sporadic groups related to the Petersen graph I, Comm. Algebra 16 (1988), 925–953.
  • ––––, Geometries for sporadic groups related to the Petersen graph II, European J. Combin. 10 (1989), 347–362.
  • W. M. Kantor, Some Geometries that are Almost Buildings, European J. Combin. 2 (1981), 239–247.
  • E. A. Komissartschik and S. V. Tsaranov, Construction of finite groups amalgams and geometries. Geometries of the group $\U_{4}(2)$, Comm. Algebra 18 (1990), 1071-1117.
  • A. Neumaier, Some sporadic geometries related to $PG(3,2)$, Arch. Math., 42 (1984), 89-96.
  • A. Pasini, Diagram Geometries, Oxford Sci. Publ., Oxford Univ. Press, New York, 1994.
  • M. A. Ronan, Lectures on Buildings, Persp. Math., Academic Press, Boston, 1989.
  • M. A. Ronan and S. D. Smith, 2-local geometries for some sporadic groups, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, 1979), Proc. Symp. Pure Math. 37 (1980), pp. 283–289.
  • M. A. Ronan and G. Stroth, Minimal parabolic geometries for the sporadic groups, European J. Combin. 5 (1984), 59–91.
  • P. Rowley, The Chamber graph of the $\M_{24}$-maximal 2-local geometry, J. Comput. Math. 12 (2009), 120–143.
  • J. Tits, A local approach to buildings. in The Geometric Vein, The Coxeter Festschrift (1981), 519–547.
  • M. Wester, Endliche fahnentransitive Tits-Geometrien and ihre universellen Überlagerungen, Mitt. Math. Sem. Giessen 170 (1985), 143 pp.