Hiroshima Mathematical Journal

Nonoscillation of elliptic differential equations of second order

Norio Yoshida

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 2 (1974), 279-284.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137063

Digital Object Identifier
doi:10.32917/hmj/1206137063

Mathematical Reviews number (MathSciNet)
MR0348245

Zentralblatt MATH identifier
0299.35029

Subjects
Primary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc.

Citation

Yoshida, Norio. Nonoscillation of elliptic differential equations of second order. Hiroshima Math. J. 4 (1974), no. 2, 279--284. doi:10.32917/hmj/1206137063. https://projecteuclid.org/euclid.hmj/1206137063


Export citation

References

  • [1] W. Allegretto, Eigenvalue comparison and oscillation criteria for elliptic operators, J. London Math. Soc. 3 (1971), 571-575.
  • [2] C. Clark and C. A. Swanson, Comparison theorems for elliptic differential equations, Proc. Amer. Math. Soc. 16 (1965), 886-890.
  • [3] R. Courant and D. Hubert, Methods of Mathematical Physics, Vol. I, Wiley (Interscience), New York, 1953.
  • [4] V. B. Headley, Some oscillation properties of selfadjoint elliptic equations, Proc. Amer. Math. Soc. 25 (1970), 824-829.
  • [5] V. B. Headley and C. A. Swanson, Oscillation criteria for elliptic equations, Pacific J. Math. 27 (1968), 501-506.
  • [6] K. Kreith, A Picone identity for strongly elliptic systems, Duke Math. J. 38 (1971), 473-481.
  • [7] L. M. Kuks, Sturm's theorem and oscillation of solutions of strongly elliptic systems, Soviet Math. Dokl. 3 (1962), 24-27.
  • [8] C. A. Swanson, A generalization of Sturm's comparison theorem,J. Math.Anal. Appl. 15 (1966), 512-519.
  • [9] C. A. Swanson, An identity for elliptic equations with applications, Trans. Amer. Math. Soc. 134 (1968), 325-333.
  • [10] C. A. Swanson, Nonoscillation criteria for elliptic equations, Canad. Math. Bull. 12 (1969), 275-280.