Hiroshima Mathematical Journal

Nonhomogeneity of Picard dimensions of rotation free hyperbolic densities

Toshimasa Tada

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 25, Number 2 (1995), 227-249.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206127711

Digital Object Identifier
doi:10.32917/hmj/1206127711

Mathematical Reviews number (MathSciNet)
MR1336899

Zentralblatt MATH identifier
0846.35037

Subjects
Primary: 35J10: Schrödinger operator [See also 35Pxx]
Secondary: 35B65: Smoothness and regularity of solutions

Citation

Tada, Toshimasa. Nonhomogeneity of Picard dimensions of rotation free hyperbolic densities. Hiroshima Math. J. 25 (1995), no. 2, 227--249. doi:10.32917/hmj/1206127711. https://projecteuclid.org/euclid.hmj/1206127711


Export citation

References

  • [1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrodinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273.
  • [2] H. Imai, On Picard dimensions of nonpositive densities in Schrodinger equations, Complex Variables, (to appear).
  • [3] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.
  • [4] M. Murata, Structure of positive solutions to (- + V)u = 0 in R", Duke Math. J., 53 (1986), 869-943.
  • [5] M. Murata, Isolated singularites and positive solutions of elliptic equations in R", Aarhus Univ. Preprint Series, 14 (1986/87), 1-39.
  • [6] L. Myrberg, Uber die Existenz der Greenschen Funktion der Gleichung u = c(P)u auf Riemannschen Flachen, Ann. Acad. Sci. Fenn., 170 (1954), 1-8.
  • [7] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
  • [8] M. Nakai, Picard principle and Riemann theorem, Tohoku Math. J., 28 (1976), 277-292.
  • [9] M. Nakai, Comparison of Martin boundaries for Schrodinger operators, Hokkaido Math. J., 18 (1989), 245-261.
  • [10] M. Nakai, Continuity of solutions of Schrodinger equations, Math. Proc. Camb. Phil. Soc., 110 (1991), 581-597.
  • [11] M. Nakai and T. Tada, Monotoneity and homogeneity of Picard dimensions for signed radial densities, NIT Sem. Rep., 99 (1993), 1-51.
  • [12] R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Studies #7, 1965.