Hiroshima Mathematical Journal

A class of vector fields on manifolds containing second order ODEs

Milan Medve\vd

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 26, Number 1 (1996), 127-149.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206127493

Digital Object Identifier
doi:10.32917/hmj/1206127493

Mathematical Reviews number (MathSciNet)
MR1380429

Zentralblatt MATH identifier
0852.34043

Subjects
Primary: 58F25
Secondary: 34A26: Geometric methods in differential equations

Citation

Medve\vd, Milan. A class of vector fields on manifolds containing second order ODEs. Hiroshima Math. J. 26 (1996), no. 1, 127--149. doi:10.32917/hmj/1206127493. https://projecteuclid.org/euclid.hmj/1206127493


Export citation

References

  • [1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Applied Math. Sciences 75, Second ed., Springer-Verlag, New York, Heidelberg 1988.
  • [2] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, New York, Amsterdam 1967.
  • [3] R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin, New York, 1967.
  • [4] J. M. Gushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics 20, Springer-Verlag, Berlin, Heidelberg 1977.
  • [5] R. Devaney, Singularities in classical mechanical systems, in Ergodic Theory and Dynamical Systems I (A. Katok, Ed.), Birkhauser, Basel 1981, p. 211.
  • [6] G. Fusco and M. Oliva, Dissipative systems with constraints, J. Differential Equations 63 (1986), 362-388.
  • [7] G. Godbillon, Geometric Diferentielle et Mecanique Analytique, Collection Methodes Hermann, Paris, 1969.
  • [8] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York, Heidelberg, 1973.
  • [9] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, Vol. II, Interscience Publ., New York, London and Sydney, 1969.
  • [10] E. A. Lacomba and G. Sienza, Blow up techniques in the Kepler problem, in: Holomorphic Dynamics (Eds.X. Gomez-Mont, J. Seade, A. Verjovski), LNM 1345, Springer-Verlag, Heidelberg, New York 1988.
  • [11] S. Lang, Introduction to Differentiable Manifolds, Interscience Publ., New York, 1962.
  • [12] J. N. Mather, Solutions of generic linear equations, Dynamical Systems (M. M. Peixoto, ed.), Academic Press, New York and London, 1973, pp. 185-193.
  • [13] M. Medved, Generic bifurcations of second order ordinary differential equations near closed orbits, J. Differential Equations 36 (1980), 98-107.
  • [14] M. Medved, On generic bifurcations of second order ordinary differential equations near closed orbits, Asterisque 50 (1977), 293-297.
  • [15] M. Medved, Generic bifurcations of second order ordinary differential equations on differentiable manifolds, Mathematica Slovaca 27 (1977), 9-24.
  • [16] H. Oka, Constrained systems, characteristic surfaces and normal forms, Japan J. Math. 4 (1987), 393-431.
  • [17] H. Oka and H. Kokubu, An approach to constrained equations and strange attractors, Patterns and Waves--Qualitative Analysis of Nonlinear Differential Equations (T. Nishida, M. Mimura and H. Fujii, eds.), Kinokanija and North-Holland, 1986, pp. 607-630.
  • [18] J. Robbin, Relative equilibria in mechanical systems, Dynamical Systems (M. M. Peixoto, ed.), Academic Press, New York and London, 1973, pp. 425-441.
  • [19] S. Shahshahani, Second order ordinary differential equations on differentiable manifolds, Global analysis: Proc. Sym. Pure Math., vol. 14, AMS, 1970, pp. 265-272.
  • [20] S. Shahshahani, Dissipative systems on manifolds, Invent. Math. 16 (1972), 177-190.
  • [21] F. Takens, Mechanical and gradient systems, local perturbations and generic properties, Bol. Soc. Brasil 14 (1983), 147-162.