Geometry & Topology

Planar open books, monodromy factorizations and symplectic fillings

Olga Plamenevskaya and Jeremy Van Horn-Morris

Full-text: Open access

Abstract

We study fillings of contact structures supported by planar open books by analyzing positive factorizations of their monodromy. Our method is based on Wendl’s theorem on symplectic fillings of planar open books. We prove that every virtually overtwisted contact structure on L(p,1) has a unique filling, and describe fillable and nonfillable tight contact structures on certain Seifert fibered spaces.

Article information

Source
Geom. Topol., Volume 14, Number 4 (2010), 2077-2101.

Dates
Received: 17 December 2009
Accepted: 13 August 2010
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883514

Digital Object Identifier
doi:10.2140/gt.2010.14.2077

Mathematical Reviews number (MathSciNet)
MR2740642

Zentralblatt MATH identifier
1319.57019

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 53D35: Global theory of symplectic and contact manifolds [See also 57Rxx]

Keywords
contact structures open books symplectic filling

Citation

Plamenevskaya, Olga; Van Horn-Morris, Jeremy. Planar open books, monodromy factorizations and symplectic fillings. Geom. Topol. 14 (2010), no. 4, 2077--2101. doi:10.2140/gt.2010.14.2077. https://projecteuclid.org/euclid.gt/1513883514


Export citation

References

  • S Akbulut, B Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319–334
  • F Ding, H Geiges, Handle moves in contact surgery diagrams, J. Topol. 2 (2009) 105–122
  • Y Eliashberg, Filling by holomorphic discs and its applications, from: “Geometry of low-dimensional manifolds, 2 (Durham, 1989)”, (S K Donaldson, C B Thomas, editors), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45–67
  • Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian knots, from: “Geometry, topology, and dynamics (Montreal, PQ, 1995)”, (F Lalonde, editor), CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17–51
  • J B Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255–4267
  • J B Etnyre, Lectures on open book decompositions and contact structures, from: “Floer homology, gauge theory, and low-dimensional topology”, (D A Ellwood, P Ozváth, A I Stipsicz, Z Szabó, editors), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103–141
  • P Ghiggini, P Lisca, A I Stipsicz, Classification of tight contact structures on small Seifert $3$–manifolds with $e\sb 0\geq 0$, Proc. Amer. Math. Soc. 134 (2006) 909–916
  • P Ghiggini, P Lisca, A I Stipsicz, Tight contact structures on some small Seifert fibered $3$–manifolds, Amer. J. Math. 129 (2007) 1403–1447
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002) 405–414
  • R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177–206
  • R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999)
  • R Hind, Stein fillings of lens spaces, Commun. Contemp. Math. 5 (2003) 967–982
  • K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309–368
  • K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427–449
  • K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289–311
  • P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457–546
  • P Lisca, On symplectic fillings of $3$–manifolds, from: “Proceedings of 6th Gökova Geometry-Topology Conference”, Turkish J. Math. 23 (1999) 151–159
  • P Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008) 765–799
  • P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact $3$–manifolds. III, J. Symplectic Geom. 5 (2007) 357–384
  • P Lisca, A I Stipsicz, On the existence of tight contact structures on Seifert fibered $3$–manifolds, Duke Math. J. 148 (2009) 175–209
  • D Margalit, J McCammond, Geometric presentations for the pure braid group, J. Knot Theory Ramifications 18 (2009) 1–20
  • D McDuff, The structure of rational and ruled symplectic $4$–manifolds, J. Amer. Math. Soc. 3 (1990) 679–712
  • H Ohta, K Ono, Simple singularities and topology of symplectically filling $4$–manifold, Comment. Math. Helv. 74 (1999) 575–590
  • P Ozsváth, A Stipsicz, Z Szabó, Planar open books and Floer homology, Int. Math. Res. Not. (2005) 3385–3401
  • O Plamenevskaya, Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547–561
  • C Wendl, Contact fiber sums, monodromy maps, and symplectic fillings, in preparation
  • C Wendl, Strongly fillable contact manifolds and $J$–holomorphic foliations, Duke Math. J. 151 (2010) 337–384
  • H Wu, Tight contact small seifert spaces with $e_0\neq0,-1,-2$