Geometry & Topology

Geodesic flow for $\mathrm{CAT}(0)$–groups

Arthur Bartels and Wolfgang Lück

Full-text: Open access

Abstract

We associate to a CAT(0)–space a flow space that can be used as the replacement for the geodesic flow on the sphere tangent bundle of a Riemannian manifold. We use this flow space to prove that CAT(0)–group are transfer reducible over the family of virtually cyclic groups. This result is an important ingredient in our proof of the Farrell–Jones Conjecture for these groups.

Article information

Source
Geom. Topol., Volume 16, Number 3 (2012), 1345-1391.

Dates
Received: 16 September 2010
Revised: 12 March 2012
Accepted: 2 June 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732439

Digital Object Identifier
doi:10.2140/gt.2012.16.1345

Mathematical Reviews number (MathSciNet)
MR2967054

Zentralblatt MATH identifier
1263.37052

Subjects
Primary: 20F67: Hyperbolic groups and nonpositively curved groups

Keywords
geodesic flow space $\mathrm{CAT}(0)$–groups Farrell–Jones Conjecture

Citation

Bartels, Arthur; Lück, Wolfgang. Geodesic flow for $\mathrm{CAT}(0)$–groups. Geom. Topol. 16 (2012), no. 3, 1345--1391. doi:10.2140/gt.2012.16.1345. https://projecteuclid.org/euclid.gt/1513732439


Export citation

References

  • A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631–689
  • A Bartels, W Lück, H Reich, Equivariant covers for hyperbolic groups, Geom. Topol. 12 (2008) 1799–1882
  • A Bartels, W Lück, H Reich, On the Farrell–Jones conjecture and its applications, J. Topol. 1 (2008) 57–86
  • M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer, Berlin (1999)
  • A Dold, Lectures on algebraic topology, second edition, Grundl. Math. Wissen. 200, Springer, Berlin (1980)
  • F T Farrell, L E Jones, Stable pseudoisotopy spaces of compact non-positively curved manifolds, J. Differential Geom. 34 (1991) 769–834
  • F T Farrell, L E Jones, Topological rigidity for compact non-positively curved manifolds, from: “Differential geometry: Riemannian geometry (Los Angeles, CA, 1990)”, Proc. Sympos. Pure Math. 54, Amer. Math. Soc., Providence, RI (1993) 229–274
  • W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: “Handbook of $K$–Theory”, (E M Friedlander, D R Grayson, editors), Springer, Berlin (2005) 703–842
  • I Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403–482
  • J R Munkres, Topology: a first course, Prentice-Hall, Englewood Cliffs, N.J. (1975)
  • K Nagami, Mappings of finite order and dimension theory, Japan. J. Math. 30 (1960) 25–54
  • N E Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967) 133–152