Functiones et Approximatio Commentarii Mathematici

Sur les chiffres des nombres premiers translatés

Najib Ouled Azaiez, Mohamed Mkaouar, and Jörg M. Thuswaldner

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The aim of this work is to prove new results on a class of digital functions with special emphasis on shifted primes as arguments. Our method lies on the estimate of exponential sums of the form $\sum_{n\leq x}\Lambda (n)\exp(2i\pi f(n+c_n)+\beta n)$ where $f$ a digital function, $\mathbf{c}=(c_n)$ is an almost-periodic sequence in $ \mathbb{Z}$ and $\beta $ is a real parameter, which extend the works of Mauduit-Rivat \cite{mr1} and Martin-Mauduit-Rivat \cite{mmr} to the case of the shifted prime numbers satisfying a digital constraint.

Article information

Funct. Approx. Comment. Math., Volume 51, Number 2 (2014), 237-267.

First available in Project Euclid: 26 November 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11A63: Radix representation; digital problems {For metric results, see 11K16} 11L03: Trigonometric and exponential sums, general 11N05: Distribution of primes
Secondary: 11L20: Sums over primes 11N60: Distribution functions associated with additive and positive multiplicative functions

exponential sums shifted primes digital function


Mkaouar, Mohamed; Azaiez, Najib Ouled; Thuswaldner, Jörg M. Sur les chiffres des nombres premiers translatés. Funct. Approx. Comment. Math. 51 (2014), no. 2, 237--267. doi:10.7169/facm/2014.51.2.2.

Export citation


  • J.-P. Allouche, J. Shallit, Automatic sequences: Theory, applications, generalisations, Cambridge University Press, Cambridge, 2003.
  • R. Bellman, H.N. Shapiro, On a problem in additive number theory, Ann. of Math. 49(2) (1948), 333–340.
  • C. Dartyge, G. Tenenbaum, Sommes des chiffres de multiples d'entiers , Ann. Inst. Fourier 55(7) (2005), 2423–2474.
  • H. Davenport, Multiplicative number theory, Graduate texts in Mathematics vol. 74, Springer-Verlag, New York, éd. third, 2000, revised and with a preface by Hugh L. Montgomery.
  • M. Drmota, C. Mauduit, J. Rivat, Primes with an average sum of digits, Compos. Math. 145 (2009), no. 2, 271–292.
  • M. Drmota, C. Mauduit, Weyl sums over integers with affine digit restrictions , J. Number Theory 130 (2010), no.11, 2404–2427.
  • C.J. De La Vallée Poussin, Recherches analytiques sur la théorie des nombres pemiers, Brux. S. sc. 21 (1896), 183–256, 281–362, 363–397.
  • S. Eilenberg, Automata, languages, and machines, Vol. Academic Press, (A subsidiary of Harcourt Brace Jovanovich, Publishers), Pure and Applied Mathematics, New York, 1974.
  • C.G. Esseen, Fourier analysis of distribution functions, a mathematical study of Laplace-Gaussian law, Acta Math. 77 (1945), 1–125.
  • N. Fine, The distribution of the sum of digits (mod$p$), Bull. Amer. Math. Soc. 71 (1965), 651–652.
  • E. Fouvry, C. Mauduit, Méthodes de crible et fonctions sommes des chiffres, Acta Arith. 77(4) (1996), 339–351.
  • E. Fouvry, C. Mauduit, Sommes des chiffres et nombres presque premiers, Mathematische Annalen 305 (1996), 571–599.
  • A.O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265.
  • J. Hadamard, Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220.
  • K. Mahler, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys. Mass. Inst. Techn. 6 (1927), 158–163.
  • B. Martin, C. Mauduit, J. Rivat, Sur les chiffres des nombres premiers,
  • C. Mauduit, Multiplicative properties of the Thue-Morse sequence, Period Math. Hungar. 43 (2001), 137–153.
  • C. Mauduit, J. Rivat, Sur un probleme de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. 171 (2010), 1591–1646.
  • C. Mauduit, J. Rivat, La somme des chiffres des carrés, Acta Mathematica 203 (2009), 107–148.
  • C. Mauduit, A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), no. 1, 25–38.
  • C. Mauduit, A. Sárközy, On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), no. 2, 145–173.
  • I.M. Vinogradov, The method of trigonometrical sums in the theory of numbers, translated from the Russian, revised and annotated by K. F. Roth and A. Davenport, Interscience, London, 1954.