Experimental Mathematics

A Note on Pseudo-Anosov Maps with Small Growth Rate

Peter Brinkmann

Full-text: Open access

Abstract

We present an explicit sequence of pseudo-Anosov maps $\phi_k: S_{2k}\rightarrow S_{2k}$ of surfaces of genus $2k$ whose growth rates converge to one.

Article information

Source
Experiment. Math., Volume 13, Number 1 (2004), 49-54.

Dates
First available in Project Euclid: 10 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.em/1086894089

Mathematical Reviews number (MathSciNet)
MR2065567

Zentralblatt MATH identifier
1049.37029

Subjects
Primary: 37E30: Homeomorphisms and diffeomorphisms of planes and surfaces

Keywords
Pseudo-Anosov homeomorphisms growth rates train tracks

Citation

Brinkmann, Peter. A Note on Pseudo-Anosov Maps with Small Growth Rate. Experiment. Math. 13 (2004), no. 1, 49--54. https://projecteuclid.org/euclid.em/1086894089


Export citation