Open Access
2018 Empirical Bayes analysis of spike and slab posterior distributions
Ismaël Castillo, Romain Mismer
Electron. J. Statist. 12(2): 3953-4001 (2018). DOI: 10.1214/18-EJS1494

Abstract

In the sparse normal means model, convergence of the Bayesian posterior distribution associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. The plug-in posterior squared–$L^{2}$ norm is shown to converge at the minimax rate for the euclidean norm for appropriate choices of spike and slab distributions. Possible choices include standard spike and slab with heavy tailed slab, and the spike and slab LASSO of Ročková and George with heavy tailed slab. Surprisingly, the popular Laplace slab is shown to lead to a suboptimal rate for the empirical Bayes posterior itself. This provides a striking example where convergence of aspects of the empirical Bayes posterior such as the posterior mean or median does not entail convergence of the complete empirical Bayes posterior itself.

Citation

Download Citation

Ismaël Castillo. Romain Mismer. "Empirical Bayes analysis of spike and slab posterior distributions." Electron. J. Statist. 12 (2) 3953 - 4001, 2018. https://doi.org/10.1214/18-EJS1494

Information

Received: 1 December 2017; Published: 2018
First available in Project Euclid: 8 December 2018

zbMATH: 07003234
MathSciNet: MR3885271
Digital Object Identifier: 10.1214/18-EJS1494

Subjects:
Primary: 62G20

Keywords: Convergence rates of posterior distributions , Empirical Bayes , spike and slab , spike and slab LASSO

Vol.12 • No. 2 • 2018
Back to Top