Electronic Journal of Statistics

AneuRisk65: A dataset of three-dimensional cerebral vascular geometries

Laura M. Sangalli, Piercesare Secchi, and Simone Vantini

Full-text: Open access


We describe the AneuRisk65 data, obtained from image reconstruction of three-dimensional cerebral angiographies. This dataset was collected for the study of the aneurysmal pathology, within the AneuRisk Project. It includes the geometrical reconstructions of one of the main cerebral vessels, the Inner Carotid Artery, described in terms of the vessel centreline and of the vessel radius profile. We briefly illustrate the data derivation and processing, explaining various aspects that are of interest for this applied problem, while also discussing the peculiarities and critical issues concerning the definition of phase and amplitude variabilities for these three-dimensional functional data.

Article information

Electron. J. Statist., Volume 8, Number 2 (2014), 1879-1890.

First available in Project Euclid: 29 October 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Multidimensional curves three-dimensional angiographies AneuRisk65


Sangalli, Laura M.; Secchi, Piercesare; Vantini, Simone. AneuRisk65: A dataset of three-dimensional cerebral vascular geometries. Electron. J. Statist. 8 (2014), no. 2, 1879--1890. doi:10.1214/14-EJS938. https://projecteuclid.org/euclid.ejs/1414588176

Export citation


  • Castro, M. A., Putman, C. M. and Cebral, J. R. (2006). Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: A study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries., AJNR American Journal of Neuroradiology 27 2061–2068.
  • Cebral, J. R., Castro, M. A., Burgess, J. E., Pergolizzi, R. S., Sheridan, M. J. and Putman, C. M. (2005). Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models., AJNR American Journal of Neuroradiology 26 2550–2559.
  • Krayenbuehl, H., Huber, P. and Yasargil, M. G. (1982). Krayenbuhl/Yasargil Cerebral Angiography., Thieme Medical Publishers, 2nd ed.
  • Ma, B., Lu, J., Harbaugh, R. E. and Raghavan, M. L. (2007). Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms., Journal of Biomechanical Engineering 129 88–96.
  • Meng, H., Tutino, V. M., Xiang, J. and Siddiqui, A. (2013). High WSS or Low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis., AJNR American Journal of Neuroradiology.
  • Passerini, T., Sangalli, L. M., Vantini, S., Piccinelli, M., Bacigaluppi, S., Antiga, L., Boccardi, E., Secchi, P. and Veneziani, A. (2012). An integrated CFD-statistical investigation of parent vasculature of cerebral aneurysms., Cardio. Eng. and Tech. 3 26–40.
  • Piccinelli, M., Veneziani, A., Steinman, D. A., Remuzzi, A. and Antiga, L. (2009). A framework for geometric analysis of 852 vascular structures: applications to cerebral aneurysms., IEEE Trans. Med. Imaging 28 1141–1155.
  • Piccinelli, M., Bacigaluppi, S., Boccardi, E., Ene-Iordache, B., Remuzzi, A., Veneziani, A. and Antiga, L. (2011). Geometry of the ICA and recurrent patterns in location, orientation and rupture status of lateral aneurysms: An image-based computational study., 68 1270–1285.
  • Rinkel, G. J., Djibuti, M., Algra, A. and Van Gijn, J. (1998). Prevalence and risk of rupture of intracranial aneurysms: A systematic review., Stroke 29 251–256.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Veneziani, A. (2009a). Efficient estimation of three-dimensional curves and their derivatives by free-knot regression splines, applied to the analysis of inner carotid artery centrelines., Journal of the Royal Statistical Society Ser. C, Applied Statistics 58 285–306.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Veneziani, A. (2009b). A case study in exploratory functional data analysis: Geometrical features of the internal carotid artery., J. Amer. Statist. Assoc. 104 37–48.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Vitelli, V. (2010). K-mean alignment for curve clustering., Computational Statistics and Data Analysis 54 1219–1233.
  • Zhou, S. and Shen, X. (2001). Spatially adaptive regression splines and accurate knot selection schemes., J. Amer. Statist. Assoc. 96 247–259.

See also

  • Related item: Sangalli, L. M., Secchi, P., Vantini, S. (2014). Analysis of AneuRisk65 data: $-mean alignment. Electron. J. Statist. 8 1891–1904.
  • Related item: Cheng, W., Dryden, I. L., Hitchcock, D. B., and Le, H. (2014). Analysis of AneuRisk65 data: Internal carotid artery shape analysis. Electron. J. Statist. 8 1905–1913.
  • Related item: Staicu, A.-M. and Lu, X. (2014). Analysis of AneuRisk65 data: Classification and curve registration. Electron. J. Statist. 8 1914–1919.
  • Related item: Xie, Q., Kurtek, S., and Srivastava, A. (2014). Analysis of AneuRisk65 data: Elastic shape registration of curves. Electron. J. Statist. 8 1920–1929.
  • Related item: Gervini, E. (2014). Analysis of AneuRisk65 data: Warped logistic discrimination. Electron. J. Statist. 8 1930–1936.
  • Related item: Sangalli, L. M., Secchi, P., Vantini, S. (2014). Rejoinder: Analysis of AneuRisk65 data. Electron. J. Statist. 8 1937–1939.