Electronic Journal of Statistics

Analysis of proteomics data: Bayesian alignment of functions

Wen Cheng, Ian L. Dryden, David B. Hitchcock, and Huiling Le

Full-text: Open access


A Bayesian approach to function alignment is introduced. A model is proposed in the ambient space, with a Dirichlet prior for the derivative of the warping function and a Gaussian process for the square root velocity function. Posterior inference is carried out via Markov chain Monte Carlo simulation. The methodology is applied to a dataset of mass spectrometry scans. Good alignment is obtained for most of the known proteins, with more uncertainty at either end of each scan.

Article information

Electron. J. Statist., Volume 8, Number 2 (2014), 1734-1741.

First available in Project Euclid: 29 October 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Ambient space Dirichlet Fisher-Rao Gaussian process Gibbs sampler Markov chain Monte Carlo quotient space registration, warp


Cheng, Wen; Dryden, Ian L.; Hitchcock, David B.; Le, Huiling. Analysis of proteomics data: Bayesian alignment of functions. Electron. J. Statist. 8 (2014), no. 2, 1734--1741. doi:10.1214/14-EJS900C. https://projecteuclid.org/euclid.ejs/1414588156

Export citation


  • Browne, W. J., Dryden, I. L., Handley, K., Mian, S., and Schadendorf, D. (2010). Mixed effect modelling of proteomic mass spectrometry data by using Gaussian mixtures., J. R. Stat. Soc. Ser. C. Appl. Stat., 59(4):617–633.
  • Cheng, W., Dryden, I. L., and Huang, X. (2013). Bayesian registration of functions and curves. Technical report, University of Nottingham., http://arxiv.org/abs/1311.2105.
  • Fung, E. T. and Enderwick, C. (2002). ProteinChip clinical proteomics: Computational challenges and solutions., Computational Proteomics Supplement, 32:S34–S41.
  • Koch, I., Hoffman, P., and Marron, J. S. (2014). Proteomics profiles from mass spectrometry., Electronic Journal of Statistics, 8:1703–1714, Special Section on Statistics of Time Warpings and Phase Variations.
  • Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011a). Shape analysis of elastic curves in Euclidean spaces., IEEE Trans. Pattern Anal. Mach. Intell, 33(7):1415–1428.
  • Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron, J. S. (2011b). Registration of functional data using the Fisher-Rao metric. Technical report, Florida State University. arXiv:1103.3817v2, [math.ST].
  • Stein, M. L. (1999)., Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.

See also

  • Related item: Koch, I., Hoffmann, P., Marron, J. S. (2014). Proteomics profiles from mass spectrometry. Electron. J. Statist. 8(2) 1703–1713.