Electronic Journal of Statistics

Statistics of time warpings and phase variations

J. S. Marron, James O. Ramsay, Laura M. Sangalli, and Anuj Srivastava

Full-text: Open access

Abstract

Many methods exist for one dimensional curve registration, and how methods compare has not been made clear in the literature. This special section is a summary of a detailed comparison of a number of major methods, done during a recent workshop. The basis of the comparison was simultaneous analysis of a set of four real data sets, which engendered a high level of informative discussion. Most research groups in this area were represented, and many insights were gained, which are discussed here. The format of this special section is four papers introducing the data, each accompanied by a number of analyses by different groups, plus a discussion summary of the lessons learned.

Article information

Source
Electron. J. Statist., Volume 8, Number 2 (2014), 1697-1702.

Dates
First available in Project Euclid: 29 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1414588152

Digital Object Identifier
doi:10.1214/14-EJS901

Mathematical Reviews number (MathSciNet)
MR3273584

Zentralblatt MATH identifier
1305.62015

Keywords
Functional data analysis phase and amplitude variation registration warping

Citation

Marron, J. S.; Ramsay, James O.; Sangalli, Laura M.; Srivastava, Anuj. Statistics of time warpings and phase variations. Electron. J. Statist. 8 (2014), no. 2, 1697--1702. doi:10.1214/14-EJS901. https://projecteuclid.org/euclid.ejs/1414588152


Export citation

References

  • Altman, N. S. and Villarreal, J. C. (2004). Self-modelling regression for longitudinal data with time-invariant covariates., Canad. J. Statist. 32 251–268.
  • Boudaoud, S., Rix, H. and Meste, O. (2010). Core shape modelling of a set of curves., Comput. Statist. Data Anal. 54 308–325.
  • Brumback, L. C. and Lindstrom, M. J. (2004). Self modeling with flexible, random time transformations., Biometrics 60 461–470.
  • Gasser, T. and Kneip, A. (1995). Searching for structure in curve samples., Journal of the American Statistical Association 90 1179–1188.
  • Gervini, D. and Gasser, T. (2004). Self-modelling warping functions., Journal of the Royal Statistical Society, Series B 66 959–971.
  • James, G. M. (2007). Curve alignment by moments., The Annals of Applied Statistics 1 480–501.
  • Kaziska, D. and Srivastava, A. (2007). Gait-based human recognition by classification of cyclostationary processes on nonlinear shape manifolds., Journal of the American Statistical Association 102 1114–1128.
  • Ke, C. and Wang, Y. (2001). Semiparametric nonlinear mixed-effects models and their applications., J. Amer. Statist. Assoc. 96 1272–1298.
  • Kneip, A. and Ramsay, J. O. (2008). Combining registration and fitting for functional models., Journal of the American Statistical Association 103 1155–1165.
  • Kneip, A., Li, X., MacGibbon, K. B. and Ramsay, J. O. (2000). Curve registration by local regression., Can. J. Stat. 28 19–29.
  • Lawton, W. H., Sylvestre, E. A. and Maggio, M. S. (1972). Self modeling nonlinear regression., Technometrics 14 513–532.
  • Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data., Biometrics 46 673–687.
  • Liu, X. and Müller, H. G. (2004). Functional convex averaging and synchronization for time-warped random curves., J. Am. Stat. Assoc. 99 687–699.
  • Liu, X. and Yang, M. C. K. (2009). Simultaneous curve registration and clustering for functional data., Comput. Statist. Data Anal. 53 1361–1376.
  • Michor, P. W. and Mumford, D. (2006). Riemannian geometries on spaces of plane curves., J. Eur. Math. Soc. 8 1–48.
  • Mio, W., Srivastava, A. and Joshi, S. H. (2007). On shape of plane elastic curves., Intl. Journal of Computer Vision 73 307–324.
  • Modersitzki, J. (2003)., Numerical Methods for Image Registration. Oxford University Press.
  • Ramsay, J. O. and Li, X. (1998). Curve registration., Journal of the Royal Statistical Society, Series B. 60 351–363.
  • Ramsay, J. O. and Silverman, B. W. (2005)., Functional Data Analysis, Second ed., Springer.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Veneziani, A. (2009). A case study in exploratory functional data analysis: Geometrical features of the internal carotid artery., J. Amer. Statist. Assoc. 104 37–48.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Vitelli, V. (2010). K-mean alignment for curve clustering., Computational Statistics and Data Analysis 54 1219–1233.
  • Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011a). Registration of functional data using fisher-rao metric., arXiv:1103.3817v2 [math.ST].
  • Srivastava, A., Klassen, E., Joshi, S. H. and Jermyn, I. H. (2011b). Shape analysis of elastic curves in Euclidean spaces., IEEE Transactions on Pattern Analysis and Machine Intelligence 33 1415–1428.
  • Tang, R. and Müller, H. G. (2009). Time-synchronized clustering of gene expression trajectories., Biostatistics 10 32–45.
  • Vantini, S. (2012). On the definition of phase and amplitude variability in functional data analysis., TEST 21 676–696.
  • Wang, K. and Gasser, T. (1999). Synchronizing sample curves nonparametrically., The Annals of Statistics 27 439–460.
  • Younes, L. (1999). Optimal matching between shapes via elastic deformations., Journal of Image and Vision Computing 17 381–389.
  • Younes, L., Michor, P. W., Shah, J., Mumford, D. and Lincei, R. (2008). A metric on shape space with explicit geodesics., Matematica E Applicazioni 19 25–57.