Electronic Journal of Probability

Percolation and convergence properties of graphs related to minimal spanning forests

Christian Hirsch, Tim Brereton, and Volker Schmidt

Full-text: Open access

Abstract

Lyons, Peres and Schramm have shown that minimal spanning forests on randomly weighted lattices exhibit a critical geometry in the sense that adding or deleting only a small number of edges results in a radical change of percolation properties. We show that these results can be extended to a Euclidean setting by considering families of stationary super- and subgraphs that approximate the Euclidean minimal spanning forest arbitrarily closely, but whose percolation properties differ decisively from those of the minimal spanning forest. Since these families can be seen as generalizations of the relative neighborhood graph and the nearest-neighbor graph, respectively, our results provide a new perspective on known percolation results from literature. We argue that the rates at which the approximating families converge to the minimal spanning forest are closely related to geometric characteristics of clusters in critical continuum percolation, and we show that convergence occurs at a polynomial rate.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 105, 21 pp.

Dates
Received: 10 January 2017
Accepted: 27 November 2017
First available in Project Euclid: 28 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1514430041

Digital Object Identifier
doi:10.1214/17-EJP129

Mathematical Reviews number (MathSciNet)
MR3742402

Zentralblatt MATH identifier
06827082

Subjects
Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]
Secondary: 82B43: Percolation [See also 60K35]

Keywords
Euclidean minimal spanning forest percolation nearest-neighbor graph relative neighborhood graph rate of convergence

Rights
Creative Commons Attribution 4.0 International License.

Citation

Hirsch, Christian; Brereton, Tim; Schmidt, Volker. Percolation and convergence properties of graphs related to minimal spanning forests. Electron. J. Probab. 22 (2017), paper no. 105, 21 pp. doi:10.1214/17-EJP129. https://projecteuclid.org/euclid.ejp/1514430041


Export citation

References

  • [1] D. J. Aldous, C. Bordenave, and M. Lelarge, Near-minimal spanning trees: a scaling exponent in probability models, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 44 (2008), 962–976.
  • [2] D. J. Aldous, Which Connected Spatial Networks on Random Points have Linear Route-Lengths?, arXiv preprint arXiv:0911.5296 (2009).
  • [3] D. J. Aldous and J. M. Steele, Asymptotics for Euclidean minimal spanning trees on random points, Probability Theory and Related Fields 92 (1992), 247–258.
  • [4] K. S. Alexander, Percolation and minimal spanning forests in infinite graphs, Annals of Probability 23 (1995), 87–104.
  • [5] K. S. Alexander, The RSW theorem for continuum percolation and the CLT for Euclidean minimal spanning trees, Annals of Applied Probability 6 (1996), 466–494.
  • [6] P. Antal and A. Pisztora, On the chemical distance for supercritical Bernoulli percolation, Annals of Probability 24 (1996), 1036–1048.
  • [7] I. Benjamini, A. Nachmias, and Y. Peres, Is the critical percolation probability local?, Probability Theory and Related Fields 149 (2011), 261–269.
  • [8] D. Beringer, G. Pete, and A. Timár, On percolation critical probabilities and unimodular random graphs, arXiv preprint arXiv:1609.07043 (2016).
  • [9] E. Bertin, J.-M. Billiot, and R. Drouilhet, Continuum percolation in the Gabriel graph, Advances in Applied Probability 34 (2002), 689–701.
  • [10] J.M. Billiot, F. Corset, and E. Fontenas, Continuum percolation in the relative neighborhood graph, arXiv preprint arXiv:1004.5292 (2010).
  • [11] T. Brereton, C. Hirsch, V. Schmidt, and D. Kroese, A critical exponent for shortest-path scaling in continuum percolation, Journal of Physics A: Mathematical and Theoretical 47 (2014), 505003.
  • [12] D. J. Daley and G. Last, Descending chains, the lilypond model, and mutual-nearest-neighbour matching, Advances in Applied Probability 37 (2005), 604–628.
  • [13] D. Eppstein, M. S. Paterson, and F. F. Yao, On nearest-neighbor graphs, Discrete Comput. Geom. 17 (1997), no. 3, 263–282.
  • [14] M. Franceschetti, M. D. Penrose, and T. Rosoman, Strict inequalities of critical values in continuum percolation, Journal of Statistical Physics 142 (2011), 460–486.
  • [15] P. Grassberger, Pair connectedness and shortest-path scaling in critical percolation, Journal of Physics A: Mathematical and General 32 (1999), 6233–6238.
  • [16] G. R. Grimmett, Percolation, second ed., Springer, New York, 1999.
  • [17] G. R. Grimmett and J. M. Marstrand, The supercritical phase of percolation is well behaved, Proc. Roy. Soc. London Ser. A 430 (1990), 439–457.
  • [18] O. Häggström and R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures & Algorithms 9 (1996), 295–315.
  • [19] C. Hirsch, D. Neuhäuser, C. Gloaguen, and V. Schmidt, First passage percolation on random geometric graphs and an application to shortest-path trees, Advances in Applied Probability 47 (2015), 328–354.
  • [20] C. Hirsch, D. Neuhäuser, and V. Schmidt, Connectivity of random geometric graphs related to minimal spanning forests, Advances in Applied Probability 45 (2013), 20–36.
  • [21] G. Last and M. D. Penrose, Poisson process Fock space representation, chaos expansion and covariance inequalities, Probability Theory and Related Fields 150 (2011), 663–690.
  • [22] T. M. Liggett, R. H. Schonmann, and A. M. Stacey, Domination by product measures, Annals of Probability 25 (1997), 71–95.
  • [23] R. Lyons, Y. Peres, and O. Schramm, Minimal spanning forests, Annals of Probability 34 (2006), 1665–1692.
  • [24] S. Martineau and V. Tassion, Locality of percolation for Abelian Cayley graphs, Annals of Probability 45 (2017), 1247–1277.
  • [25] R. Meester and R. Roy, Continuum percolation, Cambridge University Press, Cambridge, 1996.
  • [26] M. D. Penrose, Random Geometric Graphs, Oxford University Press, Oxford, 2003.
  • [27] R. Roy, The Russo-Seymour-Welsh theorem and the equality of critical densities and the “dual” critical densities for continuum percolation on ${\mathbf R}^2$, Annals of Probability 18 (1990), 1563–1575.
  • [28] G. T. Toussaint, The relative neighbourhood graph of a finite planar set, Pattern Recognition 12 (1980), 261–268.
  • [29] R. M. Ziff, Exact critical exponent for the shortest-path scaling function in percolation, Journal of Physics A: Mathematical and General 32 (1999), L457–L459.