Electronic Journal of Probability

Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent

Ewain Gwynne and Xin Sun

Full-text: Open access

Abstract

We continue our study of the inventory accumulation introduced by Sheffield (2011), which encodes a random planar map decorated by a collection of loops sampled from the critical Fortuin-Kasteleyn (FK) model. We prove various local estimates for the inventory accumulation model, i.e., estimates for the precise number of symbols of a given type in a reduced word sampled from the model. Using our estimates, we obtain the scaling limit of the associated two-dimensional random walk conditioned on the event that it stays in the first quadrant for one unit of time and ends up at a particular position in the interior of the first quadrant. We also obtain the exponent for the probability that a word of length $2n$ sampled from the inventory accumulation model corresponds to an empty reduced word, which is equivalent to an asymptotic formula for the partition function of the critical FK planar map model. The estimates of this paper will be used in a subsequent paper to obtain the scaling limit of the lattice walk associated with a finite-volume FK planar map.

Article information

Source
Electron. J. Probab. Volume 22 (2017), paper no. 45, 56 pp.

Dates
Received: 21 October 2015
Accepted: 28 April 2017
First available in Project Euclid: 6 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1494036159

Digital Object Identifier
doi:10.1214/17-EJP64

Subjects
Primary: 60F17: Functional limit theorems; invariance principles 60G50: Sums of independent random variables; random walks
Secondary: 82B27: Critical phenomena

Keywords
Fortuin-Kasteleyn model random planar maps hamburger-cheeseburger bijection random walks in cones scaling limits local limit theorems Liouville quantum gravity

Rights
Creative Commons Attribution 4.0 International License.

Citation

Gwynne, Ewain; Sun, Xin. Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent. Electron. J. Probab. 22 (2017), paper no. 45, 56 pp. doi:10.1214/17-EJP64. https://projecteuclid.org/euclid.ejp/1494036159


Export citation

References

  • [1] G. Borot, J. Bouttier, and E. Guitter. Loop models on random maps via nested loops: the case of domain symmetry breaking and application to the Potts model.J. Phys. A, 45(49):494017, 35, 2012,arXiv:1207.4878.
  • [2] G. Borot, J. Bouttier, and E. Guitter. More on the $O(n)$ model on random maps via nested loops: loops with bending energy.J. Phys. A, 45(27):275206, 32, 2012,arXiv:1202.5521.
  • [3] G. Borot and B. Eynard. Enumeration of maps with self-avoiding loops and the $O(n)$ model on random lattices of all topologies.J. Stat. Mech. Theory Exp., (1):P01010, 62, 2011,arXiv:0910.5896.
  • [4] O. Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems.Electron. J. Combin., 14(1):Research Paper 9, 36 pp. (electronic), 2007.
  • [5] O. Bernardi. Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings.Electron. J. Combin., 15(1):Research Paper 109, 53 pp., 2008,arXiv:math/0612003.
  • [6] N. H. Bingham, C. M. Goldie, and J. L. Teugels.Regular variation, volume 27 ofEncyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.
  • [7] J. Bettinelli, E. Jacob, and G. Miermont. The scaling limit of uniform random plane maps,viathe Ambjørn-Budd bijection.Electron. J. Probab., 19(74), 16, 2014, 1312.5842.
  • [8] N. Berestycki, B. Laslier, and G. Ray. Critical exponents on Fortuin–Kasteleyn weighted planar maps.ArXiv e-prints, February 2015,arXiv:1502.00450.
  • [9] G. Borot. Private communication, 2016.
  • [10] L. Chen. Basic properties of the infinite critical-FK random map.ArXiv e-prints, February 2015,arXiv:1502.01013.
  • [11] B. Duplantier, J. Miller, and S. Sheffield. Liouville quantum gravity as a mating of trees.ArXiv e-prints, September 2014,arXiv:1409.7055.
  • [12] R. A. Doney. A bivariate local limit theorem.J. Multivariate Anal., 36(1):95–102, 1991.
  • [13] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ.Invent. Math., 185(2):333–393, 2011,arXiv:1206.0212.
  • [14] R. Durrett.Probability: theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
  • [15] D. Denisov and V. Wachtel. Random walks in cones.Ann. Probab., 43(3):992–1044, 2015,arXiv:1110.1254.
  • [16] J. Duraj and V. Wachtel. Invariance principles for random walks in cones.ArXiv e-prints, August 2015,arXiv:1508.07966.
  • [17] E. B. Dynkin. Some limit theorems for sums of independent random quantities with infinite mathematical expectations.Izv. Akad. Nauk SSSR. Ser. Mat., 19:247–266, 1955.
  • [18] B. Eynard and J. Zinn–Justin. The O(n) model on a random surface: critical points and large order behaviour.Nucl. Phys., B386:558–591, 1992,arXiv:hep-th/9204082.
  • [19] R. Garbit. A central limit theorem for two-dimensional random walks in a cone.Bull. Soc. Math. France, 139(2):271–286, 2011,arXiv:0911.4774.
  • [20] B. V. Gnedenko and A. N. Kolmogorov.Limit distributions for sums of independent random variables. Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob.
  • [21] M. Gaudin and I. Kostov. O(n) model on a fluctuating planar lattice. Some exact results.Phys. Lett. B, 220:200–206, 1989,arXiv:0809.3985.
  • [22] E. Gwynne and J. Miller. Convergence of the topology of critical Fortuin-Kasteleyn planar maps to that of CLE$_\kappa $ on a Liouville quantum surface. In preparation, 2017.
  • [23] E. Gwynne, C. Mao, and X. Sun. Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map I: cone times.ArXiv e-prints, February 2015,arXiv:1502.00546.
  • [24] E. Gwynne and X. Sun. Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent.ArXiv e-prints, May 2015,arXiv:1505.03375.
  • [25] E. Gwynne and X. Sun. Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map III: finite volume case.ArXiv e-prints, October 2015,arXiv:1510.06346.
  • [26] J. Lamperti. An invariance principle in renewal theory.Ann. Math. Statist., 33:685–696, 1962.
  • [27] J.-F. Le Gall. Uniqueness and universality of the Brownian map.Ann. Probab., 41(4):2880–2960, 2013,arXiv:1105.4842.
  • [28] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations.Acta Math., 210(2):319–401, 2013,arXiv:1104.1606.
  • [29] J. Miller and S. Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees.Probab. Theory Related Fields, to appear, 2013,arXiv:1302.4738.
  • [30] J. Miller and S. Sheffield. An axiomatic characterization of the Brownian map.ArXiv e-prints, June 2015,arXiv:1506.03806.
  • [31] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric.ArXiv e-prints, July 2015,arXiv:1507.00719.
  • [32] J. Miller and S. Sheffield. Liouville quantum gravity spheres as matings of finite-diameter trees.ArXiv e-prints, June 2015,arXiv:1506.03804.
  • [33] J. Miller and S. Sheffield. Imaginary geometry III: reversibility of SLE$_\kappa $ for $\kappa \in (4,8)$.Annals of Mathematics, 184(2):455–486, 2016,arXiv:1201.1498.
  • [34] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding.ArXiv e-prints, May 2016,arXiv:1605.03563.
  • [35] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map III: the conformal structure is determined.ArXiv e-prints, August 2016,arXiv:1608.05391.
  • [36] J. Miller and S. Sheffield. Imaginary geometry I: interacting SLEs.Probab. Theory Related Fields, 164(3–4):553–705, 2016,arXiv:1201.1496.
  • [37] J. Miller and S. Sheffield. Imaginary geometry II: Reversibility of $\operatorname{SLE} _\kappa (\rho _1;\rho _2)$ for $\kappa \in (0,4)$.Ann. Probab., 44(3):1647–1722, 2016,arXiv:1201.1497.
  • [38] R. C. Mullin. On the enumeration of tree-rooted maps.Canad. J. Math., 19:174–183, 1967.
  • [39] G. Schaeffer. Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees.Electron. J. Combin., 4(1):Research Paper 20, 14 pp. (electronic), 1997.
  • [40] S. Sheffield. Exploration trees and conformal loop ensembles.Duke Math. J., 147(1):79–129, 2009,arXiv:math/0609167.
  • [41] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper.Ann. Probab., 44(5):3474–3545, 2016,arXiv:1012.4797.
  • [42] S. Sheffield. Quantum gravity and inventory accumulation.Ann. Probab., 44(6):3804–3848, 2016,arXiv:1108.2241.
  • [43] M. Shimura. Excursions in a cone for two-dimensional Brownian motion.J. Math. Kyoto Univ., 25(3):433–443, 1985.
  • [44] M. Shimura. A limit theorem for two-dimensional random walk conditioned to stay in a cone.Yokohama Math. J., 39(1):21–36, 1991.
  • [45] S. Sheffield and W. Werner. Conformal loop ensembles: the Markovian characterization and the loop-soup construction.Ann. of Math. (2), 176(3):1827–1917, 2012,arXiv:1006.2374.
  • [46] X. Sun and D. B. Wilson. Sandpiles and unicycles on random planar maps.Electron. Commun. Probab., 21:Paper No. 57, 12, 2016,arXiv:1506.08881.