Electronic Journal of Probability

Random walk on random walks

Marcelo Hilário, Frank den Hollander, Vladas Sidoravicius, Renato Soares dos Santos, and Augusto Teixeira

Full-text: Open access

Abstract

In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density $\rho \in (0,\infty)$. At each step the random walk performs a nearest-neighbour jump, moving to the right with probability $p_{\circ}$ when it is on a vacant site and probability $p_{\bullet}$ when it is on an occupied site. Assuming that $p_\circ \in (0,1)$ and $p_\bullet \neq \tfrac12$, we show that the position of the random walk satisfies a strong law of large numbers, a functional central limit theorem and a large deviation bound, provided $\rho$ is large enough. The proof is based on the construction of a renewal structure together with a multiscale renormalisation argument.

Article information

Source
Electron. J. Probab., Volume 20 (2015), paper no. 95, 35 pp.

Dates
Accepted: 12 September 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465067201

Digital Object Identifier
doi:10.1214/EJP.v20-4437

Mathematical Reviews number (MathSciNet)
MR3399831

Zentralblatt MATH identifier
1328.60226

Subjects
Primary: 60F15: Strong theorems 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments
Secondary: 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41] 82C22: Interacting particle systems [See also 60K35] 82C44: Dynamics of disordered systems (random Ising systems, etc.)

Keywords
Random walk dynamic random environment strong law of large numbers functional central limit theorem large deviation bound Poisson point process coupling renormalisation regeneration times

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Hilário, Marcelo; den Hollander, Frank; Sidoravicius, Vladas; Soares dos Santos, Renato; Teixeira, Augusto. Random walk on random walks. Electron. J. Probab. 20 (2015), paper no. 95, 35 pp. doi:10.1214/EJP.v20-4437. https://projecteuclid.org/euclid.ejp/1465067201


Export citation

References

  • Avena, L.; den Hollander, F.; Redig, F. Law of large numbers for a class of random walks in dynamic random environments. Electron. J. Probab. 16 (2011), no. 21, 587–617.
  • Avena, Luca; dos Santos, Renato Soares; Völlering, Florian. Transient random walk in symmetric exclusion: limit theorems and an Einstein relation. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 2, 693–709.
  • J. Bérard and A.F. Ramírez, Fluctuations of the front in a one dimensional model for the spread of an infection, preprint, arXiv:1210.6781 [math.PR].
  • Bandyopadhyay, Antar; Zeitouni, Ofer. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 205–224.
  • Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp.
  • Birkner, Matthias; Černý, Jiří; Depperschmidt, Andrej; Gantert, Nina. Directed random walk on the backbone of an oriented percolation cluster. Electron. J. Probab. 18 (2013), no. 80, 35 pp.
  • Boldrighini, C.; Cosimi, G.; Frigio, S.; Pellegrinotti, A. Computer simulations for some one-dimensional models of random walks in fluctuating random environment. J. Stat. Phys. 121 (2005), no. 3-4, 361–372.
  • Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Almost-sure central limit theorem for a Markov model of random walk in dynamical random environment. Probab. Theory Related Fields 109 (1997), no. 2, 245–273.
  • Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Random walk in a fluctuating random environment with Markov evolution. On Dobrushin's way. From probability theory to statistical physics, 13–35, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000.
  • Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004), no. 1, 133–156.
  • Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009), no. 10, 3285–3299.
  • Dolgopyat, Dmitry; Keller, Gerhard; Liverani, Carlangelo. Random walk in Markovian environment. Ann. Probab. 36 (2008), no. 5, 1676–1710.
  • Dolgopyat, Dmitry; Liverani, Carlangelo. Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab. 14 (2009), 245–251.
  • Harris, T. E. Diffusion with "collisions" between particles. J. Appl. Probability 2 1965 323–338.
  • den Hollander, F.; dos Santos, R. S. Scaling of a random walk on a supercritical contact process. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 4, 1276–1300.
  • den Hollander, Frank; Kesten, Harry; Sidoravicius, Vladas. Random walk in a high density dynamic random environment. Indag. Math. (N.S.) 25 (2014), no. 4, 785–799.
  • den Hollander, Frank; Molchanov, Stanislav A.; Zeitouni, Ofer. Random media at Saint-Flour. Reprints of lectures from the Annual Saint-Flour Probability Summer School held in Saint-Flour. Probability at Saint-Flour. Springer, Heidelberg, 2012. vi+564 pp. ISBN: 978-3-642-32948-7.
  • F. Huveneers and F. Simenhaus, Random walk driven by simple exclusion process, preprint, arXiv:1404.4187 [math.PR].
  • Joseph, Mathew; Rassoul-Agha, Firas. Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 43–57.
  • Lawler, Gregory F.; Limic, Vlada. Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge, 2010. xii+364 pp. ISBN: 978-0-521-51918-2.
  • Liggett, Thomas M. Interacting particle systems. Reprint of the 1985 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005. xvi+496 pp. ISBN: 3-540-22617-6.
  • Lindvall, Torgny. On coupling of discrete renewal processes. Z. Wahrsch. Verw. Gebiete 48 (1979), no. 1, 57–70.
  • Mörters, Peter; Peres, Yuval. Brownian motion. With an appendix by Oded Schramm and Wendelin Werner. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. xii+403 pp. ISBN: 978-0-521-76018-8.
  • Mountford, Thomas; Vares, Maria E. Random walks generated by equilibrium contact processes. Electron. J. Probab. 20 (2015), no. 3, 17 pp.
  • Peres, Yuval; Sinclair, Alistair; Sousi, Perla; Stauffer, Alexandre. Mobile geometric graphs: detection, coverage and percolation. Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, 412–428, SIAM, Philadelphia, PA, 2011.
  • S. Popov and A. Teixeira, Soft local times and decoupling of random interlacements. Preprint 2012. [arXiv:1212.1605]
  • Rassoul-Agha, Firas; Seppäläinen, Timo. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005), no. 3, 299–314.
  • Redig, Frank; Völlering, Florian. Random walks in dynamic random environments: a transference principle. Ann. Probab. 41 (2013), no. 5, 3157–3180.
  • Resnick, Sidney I. Extreme values, regular variation and point processes. Reprint of the 1987 original. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2008. xiv+320 pp. ISBN: 978-0-387-75952-4.
  • Rozanov, Yu. A. Markov random fields. Translated from the Russian by Constance M. Elson. Applications of Mathematics. Springer-Verlag, New York-Berlin, 1982. ix+201 pp. ISBN: 0-387-90708-4.
  • W. van Saarloos, Front propagation into unstable states, Phys. Rep. 386 (2003) 29–222.
  • Sznitman, Alain-Sol. Topics in random walks in random environment. School and Conference on Probability Theory, 203–266 (electronic), ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004.
  • Zerner, Martin P. W. Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998), no. 4, 1446–1476.