Electronic Journal of Probability

Directed polymers in a random environment with a defect line

Kenneth Alexander and Gökhan Yıldırım

Full-text: Open access

Abstract

We study the depinning transition of the $1+1$ dimensional directed polymer in a random environment with a defect line. The random environment consists of i.i.d. potential values assigned to each site of $\mathbb{Z}^2$; sites on the positive axis have the potential enhanced by a deterministic value $u$. We show that for small inverse temperature $\beta$ the quenched and annealed free energies differ significantly at most in a small neighborhood (of size of order $\beta$) of the annealed critical point $u_c^a=0$.  For the case $u=0$, we show that the difference between quenched and annealed free energies is of order $\beta^4$ as $\beta\to 0$, assuming only finiteness of exponential moments of the potential values, improving existing results which required stronger assumptions.

Article information

Source
Electron. J. Probab. Volume 20 (2015), paper no. 6, 20 pp.

Dates
Accepted: 22 January 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465067112

Digital Object Identifier
doi:10.1214/EJP.v20-3379

Mathematical Reviews number (MathSciNet)
MR3311219

Zentralblatt MATH identifier
1308.82038

Subjects
Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)
Secondary: 82D60: Polymers 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
random walk depinning transition pinning Lipschitz percolation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Alexander, Kenneth; Yıldırım, Gökhan. Directed polymers in a random environment with a defect line. Electron. J. Probab. 20 (2015), paper no. 6, 20 pp. doi:10.1214/EJP.v20-3379. https://projecteuclid.org/euclid.ejp/1465067112


Export citation

References

  • Alexander, Kenneth S. The effect of disorder on polymer depinning transitions. Comm. Math. Phys. 279 (2008), no. 1, 117–146.
  • L. Balents and M. Kardar, Delocalization of flux lines from extended defects by bulk randomness, Europhys. Lett. 23 (1993), 503–509.
  • R. Basu, V. Sidoracicius, and A. Sly, Last passage percolation with a defect line and the solution of the slow bond problem. (2014). arXiv:1408.3464v2
  • Beffara, V.; Sidoravicius, V.; Spohn, H.; Vares, M. E. Polymer pinning in a random medium as influence percolation. Dynamics & stochastics, 1–15, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006.
  • Beffara, Vincent; Sidoravicius, Vladas; Vares, Maria Eulalia. Randomized polynuclear growth with a columnar defect. Probab. Theory Related Fields 147 (2010), no. 3-4, 565–581.
  • Bolthausen, Erwin. A note on the diffusion of directed polymers in a random environment. Comm. Math. Phys. 123 (1989), no. 4, 529–534.
  • R. C. Budhani, M. Swenaga, and S. H. Liou, Giant suppression of flux-flow resistivity in heavy-ion irradiated TL_2BA_2Ca_2Cu_3O_10 films: Influence of linear defects on vortex transport, Phys. Rev. Lett. 69 (1992), 3816–3819.
  • Burgers, J. M. Summation of series of fractions depending upon the roots of the Airy function. For Dirk Struik, 15–19, Boston Stud. Philos. Sci., XV, Reidel, Dordrecht, 1974.
  • Carmona, Philippe; Hu, Yueyun. On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Related Fields 124 (2002), no. 3, 431–457.
  • L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sum, J. R. Clem, and F. Holtzberg, Vortex confinement by columnar defects in YBa_2Cu_3O_7 crystals: Enhanced pinning at high fields and temperatures, Phys. Rev. Lett. 67 (1991), 648–652.
  • Comets, Francis; Yoshida, Nobuo. Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34 (2006), no. 5, 1746–1770.
  • Comets, Francis; Shiga, Tokuzo; Yoshida, Nobuo. Directed polymers in a random environment: path localization and strong disorder. Bernoulli 9 (2003), no. 4, 705–723.
  • Comets, Francis; Shiga, Tokuzo; Yoshida, Nobuo. Probabilistic analysis of directed polymers in a random environment: a review. Stochastic analysis on large scale interacting systems, 115–142, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004.
  • Dirr, N.; Dondl, P. W.; Grimmett, G. R.; Holroyd, A. E.; Scheutzow, M. Lipschitz percolation. Electron. Commun. Probab. 15 (2010), 14–21.
  • Durrett, Richard. Oriented percolation in two dimensions. Ann. Probab. 12 (1984), no. 4, 999–1040.
  • Feller, William. An introduction to probability theory and its applications. Vol. I. 3rd ed. John Wiley & Sons, Inc., New York-London-Sydney 1968 xviii+509 pp.
  • Giacomin, Giambattista. Random polymer models. Imperial College Press, London, 2007. xvi+242 pp. ISBN: 978-1-86094-786-5; 1-86094-786-7
  • Giacomin, Giambattista. Disorder and critical phenomena through basic probability models. Lecture notes from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2025. Ecole d'Ete de Probabilites de Saint-Flour. [Saint-Flour Probability Summer School] Springer, Heidelberg, 2011. xii+130 pp. ISBN: 978-3-642-21155-3
  • Grimmett, G. R.; Holroyd, A. E. Geometry of Lipschitz percolation. Ann. Inst. Henri Poincare Probab. Stat. 48 (2012), no. 2, 309–326.
  • A. Hansen, E. L. Hinrichsen, and S. Roux, Roughness of crack interfaces, Phys. Rev. Lett. 66 (1991), 2476–2479.
  • D. A. Huse and C. L. Henley, Pinning and roughening of domain wall in ising systems due to random impurities, Phys. Rev. Lett. 54 (1985), 2708–2711.
  • T. Hwa and T. Nattermann, Disorder-induced depinning transition, Phys. Rev. B 51 (1995), no. 1, 455–469.
  • Imbrie, J. Z.; Spencer, T. Diffusion of directed polymers in a random environment. J. Statist. Phys. 52 (1988), no. 3-4, 609–626.
  • M. Kardar, Depinning by quenched randomness, Phys. Rev. Lett 55 (1985), 2235–2238.
  • M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfaces., Phys. Rev. Lett. 56 (1986), no. 9, 889–892.
  • Kingman, J. F. C. The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30 1968 499–510.
  • Lacoin, Hubert. New bounds for the free energy of directed polymers in dimension $1+1$ and $1+2$. Comm. Math. Phys. 294 (2010), no. 2, 471–503.
  • Lesigne, Emmanuel; Volny, Dalibor. Large deviations for martingales. Stochastic Process. Appl. 96 (2001), no. 1, 143–159.
  • Liggett, T. M.; Schonmann, R. H.; Stacey, A. M. Domination by product measures. Ann. Probab. 25 (1997), no. 1, 71–95.
  • Nelson, David R. Vortex entanglement in high-$T_ c$ superconductors. Phys. Rev. Lett. 60 (1988), no. 19, 1973–1976.
  • L. H. Tang and I. F. Lyuksyutov, Directed polymer localization in a disordered medium, Phys. Rev. Lett. 71 (1993), 2745–2748.
  • Toninelli, Fabio Lucio. Localization transition in disordered pinning models. Methods of contemporary mathematical statistical physics, 129–176, Lecture Notes in Math., 1970, Springer, Berlin, 2009.
  • S. R. S. Varadhan, Personal communication. (2013)
  • Watbled, Frederique. Sharp asymptotics for the free energy of $1+1$ dimensional directed polymers in an infinitely divisible environment. Electron. Commun. Probab. 17 (2012), no. 53, 9 pp.