Electronic Journal of Probability

On the Marchenko-Pastur and Circular Laws for some Classes of Random Matrices with Dependent Entries

Radoslaw Adamczak

Full-text: Open access


In the first part of the article we prove limit theorems of Marchenko-Pastur type for the average spectral distribution of random matrices with dependent entries satisfying a weak law of large numbers, uniform bounds on moments and a martingale like condition investigated previously by Goetze and Tikhomirov. Examples include log-concave unconditional distributions on the space of matrices. In the second part we specialize to random matrices with independent isotropic unconditional log-concave rows for which (using the Tao-Vu replacement principle) we prove the circular law.

Article information

Electron. J. Probab., Volume 16 (2011), paper no. 37, 1065-1095.

Accepted: 2 June 2011
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 15B52: Random matrices

random matrix Marchenko-Pastur law circular law log-concave measures

This work is licensed under aCreative Commons Attribution 3.0 License.


Adamczak, Radoslaw. On the Marchenko-Pastur and Circular Laws for some Classes of Random Matrices with Dependent Entries. Electron. J. Probab. 16 (2011), paper no. 37, 1065--1095. doi:10.1214/EJP.v16-899. https://projecteuclid.org/euclid.ejp/1464820206

Export citation


  • Adamczak, Radosław; Guédon, Olivier; Litvak, Alexander; Pajor, Alain; Tomczak-Jaegermann, Nicole. Condition number of a square matrix with i.i.d. columns drawn from a convex body. To appear in Proc. Amer. Math. Soc.
  • Adamczak, Radosław; Guédon, Olivier; Litvak, Alexander; Pajor, Alain; Tomczak-Jaegermann, Nicole. Smallest singular value of random matrices with independent columns. C. R. Math. Acad. Sci. Paris 346 (2008), no. 15-16, 853–856.
  • Adamczak, Radosław; Litvak, Alexander E.; Pajor, Alain; Tomczak-Jaegermann, Nicole. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Amer. Math. Soc. 23 (2010), no. 2, 535–561.
  • Anderson, Greg W.; Zeitouni, Ofer. A law of large numbers for finite-range dependent random matrices. Comm. Pure Appl. Math. 61 (2008), no. 8, 1118–1154.
  • Ané, Cécile, Blachère; Sébastien; Chafaï, Djalil; Fougères; Pierre, Gentil, Ivan; Malrieu, Florent; Roberto, Cyril and Scheffer, Grégory. Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, Paris, 2000.
  • Aubrun, Guillaume. Random points in the unit ball of $lsp nsb p$. Positivity 10 (2006), no. 4, 755–759.
  • Bai, Zhidong; Silverstein, Jack W. Spectral analysis of large dimensional random matrices. Second edition. Springer Series in Statistics. Springer, New York, 2010. xvi+551 pp. ISBN: 978-1-4419-0660-1
  • Bai, Z. D. Circular law. Ann. Probab. 25 (1997), no. 1, 494–529.
  • Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil. Circular law theorem for random Markov matrices. Available at http://arxiv.org/abs/0808.1502. To appear in Probab. Theory Related Fields.
  • Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil. Spectrum of non-hermitian heavy tailed random matrices. Available at http://arxiv.org/abs/1006.1713. To appear in Comm. Math. Phys.
  • Borell, Christer. Convex measures on locally convex spaces. Ark. Mat. 12 (1974), 239–252.
  • Bryc, Włodzimierz; Dembo, Amir; Jiang, Tiefeng. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006), no. 1, 1–38.
  • Dozier, R. Brent; Silverstein, Jack W. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98 (2007), no. 4, 678–694.
  • El Karoui, Noureddine. Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond. Ann. Appl. Probab. 19 (2009), no. 6, 2362–2405.
  • Erdös, László; Schlein, Benjamin; Yau, Horng-Tzer; Yin Jun. The local relaxation flow approach to universality of the local statistics for random matrices. Preprint. Available at http://arxiv.org/abs/0911.3687.
  • Girko, V. L. The circle law. Teor. Veroyatnost. i Mat. Statist. No. 28, (1983), 15–21.
  • Girko, V. L. The strong circular law. Twenty years later. I. Random Oper. Stochastic Equations 12 (2004), no. 1, 49–104.
  • Götze, F.; Tikhomirov, A. Limit theorems for spectra of positive random matrices under dependence. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 311 (2004), Veroyatn. i Stat. 7, 92–123, 299; translation in J. Math. Sci. (N. Y.) 133 (2006), no. 3, 1257–1276
  • Götze, Friedrich; Tikhomirov, Alexander. The circular law for random matrices. Ann. Probab. 38 (2010), no. 4, 1444–1491.
  • Götze, F.; Tikhomirov, A. N. Limit theorems for spectra of random matrices with martingale structure. Stein's method and applications, 181–193, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press, Singapore, 2005.
  • Hensley, Douglas. Slicing convex bodies-bounds for slice area in terms of the body's covariance. Proc. Amer. Math. Soc. 79 (1980), no. 4, 619–625.
  • Ibragimov, I. A.; Linnik, Yu. V. Independent and stationary sequences of random variables. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F. C. Kingman. Wolters-Noordhoff Publishing, Groningen, 1971. 443 pp.
  • Kannan, R.; Lovász, L.; Simonovits, M. Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995), no. 3-4, 541–559.
  • Klartag, B. Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245 (2007), no. 1, 284–310.
  • Litvak, A. E.; Pajor, A.; Rudelson, M.; Tomczak-Jaegermann, N. Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195 (2005), no. 2, 491–523.
  • Marčenko, V. A.; Pastur, L. A. Distribution of eigenvalues in certain sets of random matrices. (Russian) Mat. Sb. (N.S.) 72 (114) 1967 507–536. (34 #8458)
  • Pajor, A.; Pastur, L. On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution. Studia Math. 195 (2009), no. 1, 11–29.
  • Pan, Guangming; Zhou, Wang. Circular law, extreme singular values and potential theory. J. Multivariate Anal. 101 (2010), no. 3, 645–656.
  • Paouris, Grigoris. Small ball probability estimates for log-concave measures. To appear in Trans. Amer. Math. Soc.
  • Péché, Sandrine. Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields 143 (2009), no. 3-4, 481–516.
  • Rudelson, Mark; Vershynin, Roman. The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 218 (2008), no. 2, 600–633.
  • Samson, Paul-Marie. Concentration of measure inequalities for Markov chains and $Phi$-mixing processes. Ann. Probab. 28 (2000), no. 1, 416–461.
  • Soshnikov, Alexander. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (1999), no. 3, 697–733.
  • Tao, Terence; Vu, Van. Random covariance matrices: Universality of local statistics of eigenvalues. Preprint. Available at http://arxiv.org/abs/0912.0966.
  • Tao, Terence; Vu, Van. The condition number of a randomly perturbed matrix. STOC'07 – "Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 248–255, ACM, New York, 2007.
  • Tao, Terence; Vu, Van. Random matrices: universality of ESDs and the circular law. With an appendix by Manjunath Krishnapur. Ann. Probab. 38 (2010), no. 5, 2023–2065.
  • Yin, Y. Q.; Krishnaiah, P. R. Limit theorem for the eigenvalues of the sample covariance matrix when the underlying distribution is isotropic. Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 810–816.