Electronic Journal of Probability

Statistics of a Vortex Filament Model

Franco Flandoli and Massimiliano Gubinelli

Full-text: Open access


A random incompressible velocity field in three dimensions composed by Poisson distributed Brownian vortex filaments is constructed. The filaments have a random thickness, length and intensity, governed by a measure $\gamma$. Under appropriate assumptions on $\gamma$ we compute the scaling law of the structure function of the field and show that, in particular, it allows for either K41-like scaling or multifractal scaling.

Article information

Electron. J. Probab., Volume 10 (2005), paper no. 25, 865-900.

Accepted: 14 July 2005
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

This work is licensed under aCreative Commons Attribution 3.0 License.


Flandoli, Franco; Gubinelli, Massimiliano. Statistics of a Vortex Filament Model. Electron. J. Probab. 10 (2005), paper no. 25, 865--900. doi:10.1214/EJP.v10-267. https://projecteuclid.org/euclid.ejp/1464816826

Export citation


  • K. A. Aivazis, D. I. Pullin. On velocity structure functions and the spherical vortex model for isotropic turbulence. Phys. Fluids 13 (2001), no. 7, 2019–2029.
  • M. Barsanti. personal communication.
  • J. B. Bell, D. L. Marcus. Vorticity intensification and transition to turbulence in the three-dimensional Euler equations. Comm. Math. Phys. 147 (1992), no. 2, 371–394.
  • D. Boyer, J. C. Elicer-Cortés. Conformations and persistence lengths of vortex filaments in homogeneous turbulence. J. Phys. A 33 (2000), no. 39, 6859–6868.
  • A. J. Chorin. Vorticity and turbulence. Applied Mathematical Sciences, 103. Springer-Verlag, New York, 1994. viii+174 pp. ISBN: 0-387-94197-5
  • F. Flandoli. On a probabilistic description of small scale structures in 3D fluids. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 2, 207–228.
  • F. Flandoli. Some remarks on a statistical theory of turbulent flows. Probabilistic methods in fluids, 144–160, World Sci. Publishing, River Edge, NJ, 2003.
  • F. Flandoli, M. Gubinelli. The Gibbs ensemble of a vortex filament. Probab. Theory Related Fields 122 (2002), no. 3, 317–340.
  • U. Frisch. Turbulence. The legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 1995. xiv+296 pp. ISBN: 0-521-45103-5
  • G. Gallavotti. Foundations of fluid dynamics. Translated from the Italian. Texts and Monographs in Physics. Springer-Verlag, Berlin, 2002. xviii+513 pp. ISBN: 3-540-41415-0
  • M. Ghil; R. Benzi; G. Parisi, editors. Fully developed turbulence and intermittency. Proc. Int. School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, 1985.
  • N. Hatakeyama, T. Kambe. Statistical laws of random strained-vortices in turbulence. Nonlinearity of flows and statistical properties of turbulence (Japanese) (Kyoto, 1997). No. 1029, (1998), 131–139.
  • M. Kac. Integration in function spaces and some of its applications. Lezioni Fermiane. [Fermi Lectures] Accademia Nazionale dei Lincei, Pisa, 1980. 82 pp. (1 plate).
  • A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Translated from the Russian by V. Levin. Turbulence and stochastic processes: Kolmogorov's ideas 50 years on. Proc. Roy. Soc. London Ser. A 434 (1991), no. 1890, 9–13.
  • J.-F. Le Gall. Sur le temps local d'intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. (French) [On the local time of intersection of Brownian motion in the plane and Varadhan's renormalization method] Séminaire de probabilités, XIX, 1983/84, 314–331, Lecture Notes in Math., 1123, Springer, Berlin, 1985.
  • P.-L. Lions, A. Majda. Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53 (2000), no. 1, 76–142.
  • D. Nualart, C. Rovira, S. Tindel. Probabilistic models for vortex filaments based on fractional Brownian motion. Ann. Probab. 31 (2003), no. 4, 1862–1899. 2005e:76068
  • Z.-S. She, E. Leveque. Universal scaling laws in fully developed turbulence. Physical Review Letters 72 (1994), 336.
  • A. Vincent, M. Meneguzzi. The spatial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics 225