Open Access
2006 Brownian local minima, random dense countable sets and random equivalence classes
Boris Tsirelson
Author Affiliations +
Electron. J. Probab. 11: 162-198 (2006). DOI: 10.1214/EJP.v11-309

Abstract

A random dense countable set is characterized (in distribution) by independence and stationarity. Two examples are `Brownian local minima' and `unordered infinite sample'. They are identically distributed. A framework for such concepts, proposed here, includes a wide class of random equivalence classes.

Citation

Download Citation

Boris Tsirelson. "Brownian local minima, random dense countable sets and random equivalence classes." Electron. J. Probab. 11 162 - 198, 2006. https://doi.org/10.1214/EJP.v11-309

Information

Accepted: 12 March 2006; Published: 2006
First available in Project Euclid: 31 May 2016

zbMATH: 1112.60065
MathSciNet: MR2217814
Digital Object Identifier: 10.1214/EJP.v11-309

Subjects:
Primary: 60J65
Secondary: 60B99 , 60D05 , 60G55

Keywords: Brownian motion , equivalence relation , local minimum , point process

Vol.11 • 2006
Back to Top